II. Introduction P lasmas that contain solid particulates (grains) much more massive than the ions present are usually referred to as “dusty plasmas” and are encountered in many fusion/laboratory and industrial plasmas and combustion processes, as well as in the space environment [ 1 , 2 ]. The electrodynamical interactions among dust grains and plasmas can strongly influence the behavior of plasma devices such as tokamak and industrial combustion reactors. Previous efforts have been put into both microscopic dust charging and macroscopic dust transport scales. For instance, at the microscopic (grain) scale, particle-particle, particle-mesh (P3M) approach has been used to study charging process of micro-meter sized grains in low temperature plasmas [ 3 ]. The Particle-in-Cell (PIC) - Monte Carlo Collision (MCC) approach was used for plasma particles while the PIC - Molecular Dynamics (MD) approach was used for Coulomb interactions among the dust grains. Results show that the amount of charge on the dust grain Q d could be on the order of Q d / e ∼ 3000-7000 negative ( e is the elementary charge) within the sheath. Other grain-scale charging models include a “patched charge model” using the capacitance of an isolated spherical dust grain and empirical constants based on experiment data, predicting the Q d on the order of Q d / e ∼ 10 4 [ 4 ], and a test-particle approach supercharging model using a boundary-element-based surface charging method with a multipole electric field solver, predicting the Q d on the order of Q d / e ∼ 10 2 [ 5 ] under similar plasma conditions to the patched charge model. The stochastic charging nature at the grain scale also leads to charge fluctuations [ 6 ], heating [ 7 ], and oscillations [ 8 – 10 ]. At the macroscopic (device/system) scale, electrodynamical
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2023 年 11 月 2 日发布。;https://doi.org/10.1101/2023.11.01.565159 doi:bioRxiv preprint
星际复杂有机分子 (iCOM) 的形成是天体化学中的热门话题。试图重现观测结果的主要范例之一是假设 iCOM 是在覆盖星际尘埃颗粒的冰幔上由于自由基 - 自由基偶联反应而形成的。我们通过计算量子力学方法研究冰表面上 iCOM 的形成。具体来说,我们研究了涉及 CH 3 + X 体系 (X = NH 2 、CH 3 、HCO、CH 3 O、CH 2 OH) 和 HCO + Y (Y = HCO、CH 3 O、CH 2 OH) 以及 CH 2 OH + CH 2 OH 和 CH 3 O + CH 3 O 体系的偶联和直接氢提取反应。我们利用密度泛函理论计算了两个冰水模型(分别由 33 个和 18 个水分子组成),计算了这些反应的活化能垒以及所有研究的自由基的结合能。然后,我们利用反应活化能、解吸能和扩散能以及通过 Eyring 方程推导的动力学估算了每个反应的效率。我们发现表面上的自由基 - 自由基化学并不像通常假设的那么简单。在某些情况下,直接的氢提取反应可以与自由基 - 自由基偶联竞争,而在其他情况下,它们可能包含较大的活化能。具体而言,我们发现 (i) 乙烷、甲胺和乙二醇是相关自由基 - 自由基反应的唯一可能产物;(ii) 乙二醛、甲酸甲酯、乙醇醛、甲酰胺、二甲醚和乙醇的形成可能与各自的氢提取产物竞争; (iii)乙醛和二甲基过氧化物似乎不太可能是谷物表面产物。
从食品行业的固体表面中恢复微生物是确保食品安全和质量的关键步骤。各种技术,例如擦拭,接触板,海绵采样和冲洗/浸入,都取决于感兴趣的表面类型和微生物物种,提供了明显的优势。考虑表面特征和所选技术的验证对于准确的微生物评估至关重要。此外,使用选择性培养基,超声和富集培养物等增强功能可以进一步提高恢复功效。通过采用适当的恢复技术,食品行业可以采取有针对性的卫生措施,最终降低了粮食源性疾病的风险并提高了整体消费者的安全。
Marissa Baker 博士是华盛顿大学环境与职业健康科学系 (UW DEOHS) 的助理教授,也是西北职业健康与安全中心的副主任。Baker 博士接受过工业卫生师 (IH) 培训,擅长使用空气采样、生物监测、暴露建模和调查等技术进行工作场所暴露和风险评估。Baker 博士曾担任国际癌症研究机构的委员会成员,并于 2021 年被美国环境保护署 (EPA) 局长任命为化学品科学咨询委员会成员。她还是 OSHA 建筑安全与健康咨询委员会 (ACCSH) 的成员。Baker 博士拥有西北大学生物科学学士学位、华盛顿大学暴露科学硕士学位以及华盛顿大学环境与职业卫生博士学位。 Christopher Zuidema 博士、CIH 是华盛顿大学 DEOHS 的临床助理教授,擅长空气污染、暴露评估、环境流行病学、工业卫生和职业健康。他的研究兴趣包括评估环境暴露的低成本方法、将传感器数据纳入空气污染模型以及空气污染暴露对包括工人在内的弱势群体的影响。他是一名认证工业卫生师 (CIH),也是 DEOHS 实地研究和咨询小组 (FRCG) 的成员。Zuidema 博士在康奈尔大学获得地球和大气科学学士学位,在哈佛大学获得工业卫生硕士学位,在约翰霍普金斯大学获得环境健康与工程博士学位。Marc Beaudreau,MS,CIH 是 DEOHS FRCG 的工业卫生师。Beaudreau 先生为华盛顿州的企业提供 IH 服务咨询,并为部门研究和学术提供支持。他拥有华盛顿大学的暴露科学硕士学位,是一名 CIH。致谢
接触角(> 150 °)并且在低滑动角下易滚落。[1–3] 因荷叶自清洁机制的发现和阐明而受到广泛关注[4,5],超疏水表面因其实际应用而引起了广泛关注,例如自清洁太阳能电池[6–8]、金属表面的腐蚀抑制层[9,10]防冰涂层[11,12]以及油/水分离膜和网[13–15]。超疏水表面已在许多细分应用中得到采用,例如防血服装[16]、防生物污损涂层[17,18],以及用于浓缩分子以进行生物测定分析并提高检测限。 [19,20] 超疏水表面具有异质形貌,具有纳米和微观粗糙度,以由气穴隔开的突起形式存在,通常使用低表面能材料制成。 [21] 纳米/微米级突起与低表面能的结合导致粘附性降低和液滴流动性提高。溶剂和有毒化学品的过度使用、漫长而繁琐的化学过程、有限的生物相容性和昂贵的材料是可持续制造超疏水表面的挑战。一种方便而通用的方法,也适用于商业
信息和通信技术在近几十年来的发展使得这种技术成为可能。今天我们可能面临着类似的情况,微电子技术即将用于生物系统,但半导体与生物环境之间的信号交换仍然受富含缺陷的界面的影响。半导体技术的快速发展也体现在新型微型生物传感器 [1–3] 上,微技术与纳米技术大大提高了生物传感器的灵敏度和性能。纳米生物传感器因较高的表面积与体积比 [4] 而受益于高效的转导机制,并且由于较低的分数维数,理论上分析物扩散速度更快。 [5] 此外,生物相容性、标准化制造工艺和广泛可用的生物功能化协议使纳米硅在许多方面成为生化传感的理想基材。由于硅器件的小型化,表面特性和表面功能化变得越来越重要,通过它们可以调整半导体器件的特性。对各种硅基底(如晶体硅、多孔硅或具有明确有机膜的纳米线)进行化学功能化,可能会显著改变其表面润湿性,[6] 可能会产生掺杂效应,[7] 并允许将分子线集成到传统半导体技术中。[8] 虽然微型硅基底的功能化提供了许多机会来根据您的需求调整其特性,但将生物分子固定在纳米级结构上有时可能具有挑战性。 这可能是由于生物分子在多孔基底的纳米孔中的扩散有限,或者在具有纳米级曲率的表面上不太容易形成明确界定的分子层。 [9]
摘要大气压力等离子体射流(APPJS)用于治疗表面(无机,有机和液体)的最佳用途取决于能够控制等离子体生成的反应物种流向表面的流动。典型的APPJ是一种稀有的气体混合物(RGM),该混合物(RGM)流过施加电压的管,产生RGM等离子体羽流,可延伸到环境空气中。由于电离波(IW)需要较高的电场才能传播到空气中,因此RGM等离子体羽流由周围的空气罩引导。将环境空气与RGM等离子体羽流的混合确定活性氧和氮种(RONS)的产生。AppJ通常是垂直于被处理的表面的定向。然而,由于AppJ传播性能的变化和所得的气体动力学,APPJ相对于表面的角度可能是控制反应性物种到表面的一种方法。在本文中,我们讨论了针对两个点的计算和实验研究的结果 - 具有或不具有指导气体罩的Appj中的IWS作为AppJ相对于表面的APPJ角度的函数;并使用该角度控制薄水层的血浆激活。我们发现,从等离子体管中传播到同一气体环境中的APPJ缺乏裹尸布引导的喷气机的任何方向性特性,并且随着等离子管的角度的变化,很大程度上遵循电场线。引导的Appjs随着角度的变化而同轴繁殖,并垂直向表面垂直转动,仅在表面上方只有几毫米。APPJ的角度产生不同的气体动态分布,从而可以对转移到薄水层的RON的含量进行一定程度的控制。
图 1:非晶态 SiO 2 块体模型结构的对分布函数 (PDF)。图中用颜色对不同的对进行编码,Si-O 对用蓝线表示,Si-Si 用绿线表示,OO 用红线表示。y 轴表示归一化的对数,x 轴表示相应的距离(单位为 Å)。对于块体非晶态 SiO 2 模型结构和后续图中,Si 原子用黄色球体表示,O 原子用红色表示。
摘要:证明了一些有限表示群由于其 SL 2 ( C ) 特征品种而与代数曲面相关的表示理论。我们利用代数曲面的 Enriques–Kodaira 分类和相关的拓扑工具来明确此类曲面。我们研究了 SL 2 ( C ) 特征品种与拓扑量子计算 (TQC) 的联系,作为任意子概念的替代方案。Hopf 链接 H 是我们对 TQC 观点的核心,其特征品种是 Del Pezzo 曲面 f H (交换子的迹)。从我们之前工作中的三叶结衍生而来的量子点和双量子比特魔法状态计算可以看作来自 Hopf 链接的 TQC。一些二生成 Bianchi 群的特征品种以及奇异纤维 ˜ E 6 和 ˜ D 4 的基本群的特征品种包含 f H 。与 K 3 曲面双有理等价的曲面是它们的特征簇的另一种复合体。
