Lithography equipment 117 o Lithography adoption in MtM devices 123 o Lithography equipment benchmark 124 o Maskless lithography 140 o MEMS and sensors lithography 148 o Trends and requirements o Substrate material and size o Market assumptions and forecast o Power devices lithography 165 o Trends and requirements o Substrate material and size o Market assumptions and forecast o RF devices lithography 179 o趋势和需求o基材材料和尺寸o市场假设和预测o CMOS图像传感器光刻195 O趋势和要求o基材材料和尺寸o市场假设和预测o高级包装光刻209 o趋势和要求o趋势和需求o集中在面板级包装o小组级包装o面板级包装o层次包装o层次包装o晶状体设备市场预测258 >>
超导量子计算是由于其出色的性能,可伸缩性和可靠性而实现量子至上的最有希望的平台之一[1,2]。为了推动量子计算机的计算能力,一个最终目标是增强超导电路量子电动力学(CQED)的某些特性特性,例如分解和倾向时间(分别为t 1和t 2)。在包括材料[3-5],电路设计[6-8]和制造技术[9-11]在内的不同方面的改进是必不可少的,所有这些实践都依赖于大量和及时的设备制造。因此,一种适当的制造方法,可以迅速生产设备,同时简化以避免降解,这对于开发超导量子计算技术是重要的。
$ evwudfw 2 *urzwk lq wkh xvdjh ri khwhurjhqrxv lqwhlq和fklsohwv edvlq lq lq lqdqfhg lqdqfhg iru iru iru iru iru。 ohdglqj和olnh $,dqg +3&lv和iru jigh 1月份fkls vl] hv wkdw h [fhg] h [srvuh ilhog 6lpxowdqhrxhrxhrxvo \ wkhvh及其和这个and this ululqr plpdooohu olqhzlgwkwk frqhfwlqv lq lq wkhlu uhglvwlrq od \ huv wr phw wwhw wwis,2 ghqvlw \ and edqglgwk和anyshophudqfhqwv,q wklv sdshu ghprqvwudwh和iru这是olqhv olqhv和iLhog vilwfk erxqgdu \ whvwv what what and lpsdfw ri lpsdfw ri。 whf vwfulfdo uhvlvwdqfh ru ohdndjhqw fxuhqw:vkrz wkdw word and lv yldeow wruw wruw ilqs ilqs ilood isisis isisis isisisisisisisisisionary isisisisisionary iruju odujh odujh odujh DUHD SDFNDJHV
光学光刻技术包括将特定图案从光学掩模转移到沉积在基板上的感光聚合物(通常称为光刻胶)上(Levinson,2005;Mack,2007;Xiao,2012)。因此,第一个主要步骤是沉积均匀的薄膜。这是通过旋涂工艺实现的(Luurtsema,1997)。将少量材料倒入基板中心。然后高速旋转基板,通过离心力将涂层材料摊开。图 1 表示了该过程的示意图。然后,经过热烘烤工艺后,基板通过光学掩模暴露于紫外光源下,以将图案从掩模转移到光刻胶上。曝光会导致光刻胶发生化学变化,当样品浸入溶液深处(称为显影剂)时,可以去除曝光的光刻胶(正片光刻)或未曝光的光刻胶(负片光刻)。通过控制掩模版和光刻胶之间的距离来实现最大分辨率
基于我们在去年所证明的成功的单光子3D光场光刻学,我们将方法扩展到了飞秒3D光场光刻。与我们以前的单光子与紫外线LED光的工作相比,使用飞秒光和3D光场光刻中相关的两光子光吸收可以仅在3D空间中设计的Voxel位置周围固化光线剂。这样的两光子方案可以防止在到达设计的体素位置之前,在我们以前的基于UV LED LED的单光子3D灯场光谱术中观察到,在到达设计的体素位置之前,光孔物的光孔疗法固化。飞秒两杆3D光场光刻的实验方案从将均匀的飞秒激光脉冲传递到空间光调节器开始。设计的像素映射显示在空间灯调制器上,然后传递到Microlens阵列中以在自由空间中构造3D虚拟图像。通过使用显微镜系统在光构仪层中压缩3D虚拟图像,我们可以成功生成不同的显微镜3D模式,而无需像传统的3D光刻一样依赖扫描过程。在这项研究中,我们介绍了(a)为使用飞秒光的3D模式开发的(a)算法的初步结果,当使用飞秒光线时,该算法应满足其他约束,并且((b)具有fletoResists生成的3D模式,具有flemtosecond femtsecond thepsocond Photon 3D 3D Light Field Field Field Figh Figh Figh Figh Figh Field Littionshophation。
SU-8 2000 是一种高对比度、环氧基光刻胶,专为微加工和其他微电子应用而设计,这些应用需要厚实、化学和热稳定的图像。SU-8 2000 是 SU-8 的改良配方,多年来已被 MEMS 生产商广泛使用。使用干燥速度更快、极性更强的溶剂系统可提高涂层质量并提高工艺产量。SU-8 2000 有 12 种标准粘度。单次涂覆工艺即可实现 0.5 至 >200 微米的薄膜厚度。薄膜的暴露部分和随后的热交联部分不溶于液体显影剂。SU-8 2000 具有出色的成像特性,能够产生非常高的纵横比结构。SU-8 2000 在 360 nm 以上具有非常高的光透射率,这使其非常适合在非常厚的薄膜中对近垂直侧壁进行成像。 SU-8 2000 最适合于在设备上成像、固化并保留的永久性应用。
最先进的半导体光刻将我们世界上最先进的光学系统与巧妙设计且高度优化的光化学材料和过程结合在一起,以制造使我们的现代信息社会的微型和纳米结构。应用光学,化学和材料科学的独特组合为对应用自然科学和技术感兴趣的科学家和工程师提供了理想的游乐场。多年来,光刻图案技术的发展几乎仅仅是按照驱动的扩展,并着重于改进分辨率,以支持戈登·摩尔(Gordon Moore)将更多组件挤在集成电路上的愿景。尽管这种缩放量仍未达到其最终限制,但在具有所需统一性且没有缺陷的半导体芯片上产生更多和较小的模式变得越来越困难和昂贵。针对新兴新颖应用的未来光刻技术必须强调不同的要求,包括三维(3D)形状控制,新颖(功能)材料的整合,非平面表面上的图案,对目标模式的灵活适应最终应用等等等。在技术开发50多年的技术开发中获得的半导体光刻者的知识和经验为开发新型微型和纳米技术驱动的应用提供了重要关键。它还应帮助高级工程师和经理对替代方法和应用程序的看法。本书并不是要提供对印刷图案技术各个方面的完整描述。这本书的材料是在多年的有关光刻的讲座上编写的:在Friedrich-Alexander-University-University Erlangen-Nuremberg上的技术,身体效果和建模,并为公司的特殊方面以及公司的特殊方面以及作为会议的附带活动准备专门的课程。本书旨在帮助有兴趣的学生具有物理,光学,计算工程,数学,化学,材料科学,纳米技术和其他领域的背景的学生,以在纳米化的光刻技术的迷人领域开始使用。相反,该书着重于对图像和模式形成的基本原理的解释。
ma-P 1200 是正性光刻胶系列,专为微电子和微系统技术而设计。这些光刻胶具有多种粘度,一次旋涂即可获得 0.3 – 40 μm 的薄膜厚度。非常适合用作蚀刻掩模,具有较高的干湿蚀刻耐受性 - 宽带、g-、h- 和 i-line 曝光 - 在湿蚀刻工艺和酸性和碱性电镀槽中具有非常好的图案稳定性 - 在干蚀刻工艺(例如 CHF 3 、CF 4 、SF 6)中具有高度稳定性 - 可获得良好的光刻胶图案热稳定性 - 水性碱性显影