生物技术应用具有基因工程方法,例如基因组编辑,以改善植物的性质,目的是提高结果的质量。CRISPR/CAS9成功地修改前所未有的精确度的基因组可能是由准确性,效率,成本效益和易用性引起的。CRISP/CAS9基因组编辑机制是通过插入,更换,去除一个或多个碱基的特定序列来操纵基因。由于基因的插入或变化,CRISPR/CAS方法会在基因组水平上具有破坏性的目标(脱离目标)之外的影响。本文讨论了CRISPR/CAS9,CRISPR/CAS9机制的开发以及在CRISPR/CAS9系统中经常发生的最小化方法。可以通过多种方式完成最小化攻击目标的方法,即:(1)SGRNA修饰与SGRNA GC含量,SGRNA长度,SGRNA长度,截断GRNA,SGRNA化学修饰,SGRNA化学修饰以及SILICO中SGRNA的修饰,(2)Cas Protein Modification和(3)CARS crispr crispr of CRRS PRERPR。
实现寡核苷酸的特定目标递送,无论是疾病部位,特定组织还是器官,对于增强治疗精度并最大程度地降低了脱靶效应至关重要。通过化学修饰的寡核苷酸和纳米颗粒等先进方法促进了这种精确的递送,对提高治疗效果具有巨大的希望。寡核苷酸和基因,尤其是mRNA,siRNA,反义RNA和CRISPR-CAS9系统,是传统治疗方式的替代方案。本期特刊旨在汇编研究文章和审查以癌症为癌症,靶向组织和器官靶向寡核苷酸的传递。特别重点放在修饰的mRNA,siRNA,反义RNA,CRISPR-CAS9,microRNA,质粒DNA和DNA,以及涉及纳米颗粒,树枝状聚合物和LNP的有效递送系统。了解寡核苷酸的结构和化学修饰,再加上成功的包装系统,对于在这个迅速前进的领域中成功的基因治疗是至关重要的。我们期待收到您的提交。
罕见病影响着全球近 5 亿人,主要影响儿童,并且常常导致生活质量严重下降和治疗费用高昂。虽然人们在开发罕见病的有效治疗方法方面做出了重大贡献,但仍需要更快速的药物发现策略。治疗性反义寡核苷酸可以通过由碱基序列和化学修饰决定的各种机制以高特异性调节靶基因表达;并且在一些罕见神经系统疾病的临床试验中显示出疗效。因此,本综述将重点介绍反义寡核苷酸的应用,特别是剪接转换反义寡聚体作为罕见神经系统疾病的有希望的治疗方法,主要例子是杜氏肌营养不良症和脊髓性肌萎缩症。我们还将简要讨论开发罕见病反义疗法所面临的挑战和未来前景,包括靶点发现、反义化学修饰、治疗验证的动物模型和临床试验设计。
抽象病毒样颗粒(VLP)是病毒结构蛋白,因为它们不含病毒遗传材料,因此不感染。它们是安全有效的免疫刺激剂,并且在疫苗发育中起着重要作用,因为它们具有内在的免疫原性来诱导细胞和体液免疫反应。在抗病毒疫苗的设计中,基于VLP的疫苗吸引了多功能候选者,其优点,例如自组装纳米级结构,重复性的表面表现,易于遗传和化学修饰的易用性,多功能性作为抗原呈现平台,抗原性免疫生成的疫苗和更高的疫苗接种,并具有更高的疫苗接种,并具有与之相比的效果。在这篇综述中,我们讨论了诱导细胞和体液免疫反应的VLP疫苗的机制。我们概述了构造有效的基于VLP的疫苗时的大小,形状,表面电荷,抗原表现,遗传和化学修饰以及表达系统的影响。总结了抗病毒VLP疫苗及其临床试验的最新应用。
摘要:传染病,尤其是由结核分枝杆菌引起的结核病 (TB),对全球健康构成了重大挑战,2021 年报告的死亡人数为 160 万人,是单一传染源导致的最致命疾病。耐药性传染病的增加增加了寻找有效和安全的干预疗法的紧迫性。反义疗法使用反义寡核苷酸 (ASO),它们是与其 mRNA 靶标互补的短的、化学修饰的单链脱氧核糖核苷酸分子。由于其设计的靶标特异性和在 mRNA 水平上抑制致病基因,反义疗法作为一种潜在的治疗方法引起了人们的兴趣。这种类型的疗法目前用于多种疾病,例如癌症和遗传疾病。目前,关于使用 ASO 治疗传染病的研究有限,但正在稳步增加。本综述探讨了 FDA 批准和临床前测试的 ASO 作为传染病治疗的可持续性,以及 ASO 对化学修饰的适应性,从而减少副作用并改善药物输送;从而强调了 ASO 在治疗传染病方面的潜在治疗用途。
v.yu.dolmatov。技术科学博士,SDTB Tekhnolog研究实验室负责人。电子邮件:dimondcentre@mail.ru当前的研究兴趣:爆炸纳米座的合成和化学净化的理论和应用原理,开发用于生产经过修饰和掺杂的纳米座的新方法,纳米材料的表面化学,纳米材料的表面化学,用于使用Nano-Diaonds of Lighonds技术的技术。A.N.ozerin。 化学科学博士,ISPM RAS的科学主管。 电子邮件:ozerin@ispm.ru当前的研究兴趣:高分子重量化合物;聚合物和聚合物复合材料的物理和力学;大分子化合物的化学;处理聚合物和聚合物复合材料的技术;凝结物理学;化学物理学;聚合物的X射线衍射分析;计算机模拟。 I.I.Kulakova。 PhD化学,MSU化学系石油化学和有机催化的领先研究员。 电子邮件:inna-kulakova@yandex.ru当前的研究兴趣:异质性催化,固体的表面化学,爆炸纳米座量的化学修饰,改良纳米符号在催化和生物医学中的应用。 O.O.BOCHECHKA。 技术科学博士,乌克兰ISM NAS研究副主任。A.N.ozerin。化学科学博士,ISPM RAS的科学主管。电子邮件:ozerin@ispm.ru当前的研究兴趣:高分子重量化合物;聚合物和聚合物复合材料的物理和力学;大分子化合物的化学;处理聚合物和聚合物复合材料的技术;凝结物理学;化学物理学;聚合物的X射线衍射分析;计算机模拟。 I.I.Kulakova。 PhD化学,MSU化学系石油化学和有机催化的领先研究员。 电子邮件:inna-kulakova@yandex.ru当前的研究兴趣:异质性催化,固体的表面化学,爆炸纳米座量的化学修饰,改良纳米符号在催化和生物医学中的应用。 O.O.BOCHECHKA。 技术科学博士,乌克兰ISM NAS研究副主任。电子邮件:ozerin@ispm.ru当前的研究兴趣:高分子重量化合物;聚合物和聚合物复合材料的物理和力学;大分子化合物的化学;处理聚合物和聚合物复合材料的技术;凝结物理学;化学物理学;聚合物的X射线衍射分析;计算机模拟。I.I.Kulakova。 PhD化学,MSU化学系石油化学和有机催化的领先研究员。 电子邮件:inna-kulakova@yandex.ru当前的研究兴趣:异质性催化,固体的表面化学,爆炸纳米座量的化学修饰,改良纳米符号在催化和生物医学中的应用。 O.O.BOCHECHKA。 技术科学博士,乌克兰ISM NAS研究副主任。I.I.Kulakova。PhD化学,MSU化学系石油化学和有机催化的领先研究员。 电子邮件:inna-kulakova@yandex.ru当前的研究兴趣:异质性催化,固体的表面化学,爆炸纳米座量的化学修饰,改良纳米符号在催化和生物医学中的应用。 O.O.BOCHECHKA。 技术科学博士,乌克兰ISM NAS研究副主任。PhD化学,MSU化学系石油化学和有机催化的领先研究员。电子邮件:inna-kulakova@yandex.ru当前的研究兴趣:异质性催化,固体的表面化学,爆炸纳米座量的化学修饰,改良纳米符号在催化和生物医学中的应用。O.O.BOCHECHKA。 技术科学博士,乌克兰ISM NAS研究副主任。O.O.BOCHECHKA。技术科学博士,乌克兰ISM NAS研究副主任。
摘要:随着对各种疾病相关非编码RNA的了解不断加深,ncRNA正成为新的药物和药物靶点。基于不同类型的非编码RNA的核酸药物已被设计和测试。化学修饰已被应用于非编码RNA,如siRNA或miRNA,以增加其对降解的抵抗力,同时尽量减少对其生物功能的影响。化学生物学方法也已被开发来调节各种疾病发生中相关的非编码RNA。设计核糖核酸酶靶向嵌合体以降解内源性非编码RNA等新策略正在成为调节基因表达的有前途的方法,可作为下一代药物。本综述总结了基于非编码RNA的治疗诊断学的现状、开发核酸药物的非编码RNA的主要化学修饰、RNA与不同功能生物分子的结合以及设计和筛选用于调节内源性非编码RNA表达或活性的潜在分子以进行药物开发。最后,讨论了改善非编码RNA传递的策略。
“脱靶效应很可能发生在存在与 siRNA 种子区域形成碱基配对的非靶标 mRNA 时,”Hiroshi Abe 教授解释道。“我们意识到,可以通过化学修饰降低该种子区域的碱基配对能力或双链稳定性来抑制脱靶效应,确保只有当整个引导链与靶标 mRNA 结合时才能形成稳定的复合物。”
Yugo R. Kamimura、Kenzo Yamatsugu、Tomoya Kujirai、Hitoshi Kurumizaka、Atsushi Iwama、Atsushi Kaneda、Shigehiro A. Kawashima *、Motomu Kanai * DOI:10.1038/s41467-025-56204-2 URL:https://doi.org/10.1038/s41467-025-56204-2 注释(禁运信息) 禁止在 1 月 24 日日本时间晚上 7 点(英国时间 24 日上午 10 点)之前出版。 这项研究得到了以下赠款的支持:科学研究的授予(项目编号:23H05466,23H05475),科学研究B(项目编号:21H02074),学术变革性研究A(项目编号:24H02328),学术变革研究b(项目编号:22H050501018),挑战7(PISPICT), (项目编号:21K19326,22K19553),年轻科学家研究(项目编号:22K15033),研究活动启动支持(项目编号:23K19423),AMED,AMED(项目编号:24AMA121009,21CM0106510H0006),JST-ERATO(JST-ERATO)(JST-ERATO)(JST-ERATO)(JST-ERATO)(JST-ERATO编号:JPMJERST和JPMJESS),和JPMJES119011901190119011901190119019019019019019019019019001900号。 (项目编号:JPMJCR24T3)、IAAR 研究支持计划、朝日硝子基金会研究补助金、武田科学基金会研究补助金以及持田纪念医学和制药科学基金会研究补助金。 术语表(注1) 催化剂:能促进特定化学反应但自身不发生改变的分子。通过反复作用,可以使用少量的催化剂来生产大量所需的产品。 (注2)表观遗传学:通过化学修饰DNA或蛋白质而不改变DNA碱基序列来控制基因表达的机制。遗传信息以基因组的形式表达,而化学修饰的信息则称为表观基因组。 (注3)乙酰化:在蛋白质的赖氨酸残基上的氨基(-NH2)上引入乙酰基(-COCH3)的反应。 (注4)翻译后修饰:蛋白质在细胞中合成后添加的各种化学修饰。它参与调节蛋白质活性、稳定性和定位。
在两个半导体之间具有不同类型的掺杂类型的半导体之间的静电仪,是P - N交界处的核心,这是几种电子和光电设备后面的基础,包括校正二极管,光电探测器,光载体 - 诸法索尔细胞以及光 - 发光二氧化碳。1超出了由外延半导体生长制造的传统设备,二维材料的出现(2D材料)引起了人们对范德华P - N交界原型的兴趣。2 - 5虽然这些设备尚未与传统的半导体进行典型应用的效率,但范德华(Van der Waals)具有简化的优势,并且在材料选择方面具有可观的实验性原型。取决于特定c成分的属性,p - n连接