chbe 855-计算分子生物工程学分:4生物工程中的基本概念简介,主要强调与分子建模,仿真和可视化技术集成的生物分子结构的细节。The course will introduce structural details of various biomolecules (proteins, nucleic-acids, sugars, and lipids), followed by concepts in thermodynamics and physical chemistry (such as intermolecular forces, energy, entropy, chemical potential, and Boltzmann's distribution), the applications of which will be discussed in the context of drug-receptor interactions, molecular recognition, biomolecular folding,酶催化,变构通信,扩散和运输。实验室将包括培训和了解高级模拟和可视化软件引擎。同等学历:Beng 855年级模式:字母分级
摘要:有大量证据表明胆碱能系统功能障碍在许多中枢神经系统 (CNS) 疾病中起着重要作用。在过去的三十年中,毒蕈碱受体 (mAChR) 与各种病理有关,并且已成为药物设计工作的主要目标。然而,由于正构结合位点的序列同源性很高,许多候选药物的临床成功率有限。尽管在治疗外周病变方面取得了一些进展,但针对中枢神经系统病变对研究人员来说仍然具有挑战性。尽管如此,近年来在开发具有副作用有限的功能选择性正构和变构配体方面取得了重大进展,这些配体靶向 mAChR。本综述重点介绍了过去的努力,并重点介绍了药物设计的最新进展
本课程将主要通过特定类别的治疗剂和诊断剂的案例研究来探索药物化学概念。它将开始概述药物化学概念,包括讨论药物发现方法,药物分子类(小分子,肽,抗体),优化方法和临床前评估。那些在药物化学概念和术语方面具有有限背景知识的人将涵盖介绍材料,当然是在讲座时间之外的。药物发现的案例研究,包括发现靶向肿瘤药物和成像剂的发展。将重点关注现代药物化学概念,例如基于碎片的设计和变构调制。独立研究将是书面和演示组成部分的课程要求。
摘要◥目的:DNA聚合酶theta(POL Q,由POLQ基因编码)是一种DNA修复酶,对微学末端结合(MMEJ)至关重要。pol q在正常组织中的表达有限,但在癌细胞中经常过表达,因此代表了肿瘤特异性放射性化的理想靶标。在这项研究中,我们评估用新型的小分子抑制剂靶向POL Q是提高放射疗法效率的可行策略。实验设计:我们表征了在体外和体内不同癌细胞模型中对POL Q抑制的反应。结果:在这里,我们表明ART558和ART899是POL Q DNA聚合酶域的两个新颖和特定的变构抑制剂,可有效地放射敏感性肿瘤细胞,尤其是当组合
结果:在两个AD模型中,我们发现病理发作后的非转基因对照以上的功能性胆碱能反应的潜在补偿性上调。为了确定这种增强的胆碱能信号的轨迹,我们使用药理学策略剖析了关键的突触前和突触后成分。我们确定了前额叶皮质神经元上突触后烟碱受体信号的显着和选择性增加。为了探测治疗干预对适应电路的额外影响,我们测试了胆碱能和烟碱选择性的积极认知治疗。乙酰胆碱酯酶的抑制作用进一步增强了内源性胆碱能反应,但极大地扭曲了它们的动力学。相比之下,烟碱受体的阳性变构调节增强了内源性胆碱能反应并保留其快速动力学。
激酶失调与细胞增殖,迁移和存活极为相关,表明激酶是作为抗癌药物发育的治疗靶标的重要性。然而,传统的激酶抑制剂与催化或变构位点结合与显着挑战有关。抗药性和靶向降低和多域蛋白的靶向是影响靶向抗癌药物的效率的显着限制因素。下一代治疗方法似乎已经克服了这些关注,而靶向嵌合体(Protac)技术的使用就是一种这样的方法。Protac与感兴趣的蛋白质结合并募集E3连接酶,以通过泛素 - 蛋白酶体途径降解整个靶蛋白。本综述提供了针对不同激酶的protac的最新进展迹象的详细概述,主要集中于药物化学中的新化学实体。
•变构抑制剂与PI3Kα的ATP结合位点无结合•H1047R突变体PI3Kα细胞系中的低NM效率•PI3KαH1047R突变体的PI3KαH1047R突变体的15倍选择性与高剂量的剂量升高PK•PICENTIDE•PLICONIDE•PLICOVENIDE•PLICONING PLITION•PLICONING PLINIDE•CGT•CGT IN> CGT IN> CGT IN> H1047R PD模型与胰岛素和C肽无无增加的H•CGT4824相比,与临床上相关的Alpelisib在NCI H1048小鼠肿瘤生长抑制模型•CGT4824中的良好效率和良好的效率(TGI COTICENTY INS INGINES IN NEM INMENS INMENS INSMENIDS IN NEM INMENS INSMENTIS)相比,具有优势的疗效( 35倍)为了抑制PI3KαWT
通过[Cu(PEN)2(OH 2)](CLO 4)2(C0)与胆汁ursoxyoxycholic Acid(UDCA)的反应制备了一种称为C0-UDCA的新型杂化铜(II)化合物。所产生的化合物能够抑制比前体C0和UDCA更有效的脂氧合酶。分子对接模拟阐明了与酶的相互作用,这是由于变构调节所致。新复合物通过激活未折叠的蛋白质反应,在内质网(ER)水平上对卵巢(SKOV-3)和胰腺(PANC-1)癌细胞的抗肿瘤作用。尤其是,在C0-UDCA存在下,伴侣BIP,促凋亡蛋白Chop和转录因子ATF6上调。完整细胞MALDI-MS和统计分析的组合使我们能够根据其质谱指纹区分未经处理和处理过的细胞。
替格瑞洛被归类为环戊基三唑并嘧啶。6 它是一种非竞争性变构拮抗剂,可与 P2Y12 受体可逆结合。10 由于它与 ADP 受体可逆结合,其生物利用度为 36%,疗效取决于血浆浓度。9 替格瑞洛不是前体药物,不需要代谢即可发挥作用;然而,其代谢物在抑制 P2Y12 受体方面同样有效。4,6 它在肝脏中由 CYP450 同工酶 CYP3A4 和 CYP3A5 代谢。3,6,9 由 CYP3A4 和 CYP3A5 代谢或抑制 CYP3A4 和 CYP3A5 的药物可能会延迟替格瑞洛的代谢。 4,9 与替格瑞洛同时使用会影响地高辛的代谢,因此应仔细监测地高辛的浓度。6,9,10
摘要 靶向药物的发现很大程度上依赖于靶蛋白的三维结构,当未知蛋白质靶点的三维结构时,设计其对应的靶向药物非常困难。某些蛋白质(即所谓的不可成药靶点)尽管三维结构已知,但却缺乏针对它们的药物。随着蛋白质数据库中存储的晶体/低温电子显微镜结构越来越多,发现靶向药物的可能性大大增加。此外,通过识别先前不可成药的靶点的隐藏变构位点,也很有可能将之前的不可成药靶点转变为可成药靶点。本文主要介绍目前可用的针对未知三维结构的蛋白质发现新化合物的先进方法,以及如何将不可成药的靶点转变为可成药的靶点。