使用Tencor的HRP-250来测量轮廓。使用了来自Cabot的SS12和来自AGC的CES-333F-2.5。在将晶片粘合到粘合之前(氧化物到氧化物和面对面),将顶部晶圆的边缘修剪(10毫米),并同时抛光新的斜角。这可以防止晶片边缘在磨/变薄后突破[1]。将晶圆粘合后,将散装硅研磨到大约。20 µm。之后,通过反应性离子蚀刻(RIE)将粘合晶片的剩余硅移到硅硅基(SOI) - 底物的掩埋氧化物层(盒子)上。另一个RIE过程卸下了2 µm的盒子。之后,粘合晶片的晶圆边缘处的台阶高为3 µm。随后沉积了200 nm的氮化物层,并使用光刻和RIE步骤来构建层。此外,罪被用作固定晶片的si层的固定。必须将设备晶圆边缘的剩余步骤平面化以进行进一步的标准处理。为此,将剩余的罪硬面膜(约180 nm)用作抛光止损层。在平面化之前,将4500 nm的Pe-Teos层沉积在罪恶上。这有助于填充晶圆的边缘。在第一种抛光方法中,将氧化物抛光至残留厚度约为。用SS12泥浆在罪过的500 nm。在这里,抛光是在晶片边缘没有压力的情况下进行的。然后将晶圆用CEO 2泥浆抛光到罪。用CEO 2浆料去除氧化物对罪有很高的选择性,并且抛光在罪恶层上停止。第一种抛光方法花费的时间太长,将氧化物层抛光至500 nm的目标厚度。此外,在抛光SIO 2直到停止层后,用SS12稍微抛光了罪。最后,高度选择性的首席执行官2 -lurry用于抛光罪。结果表明,步进高度很好,但是弹药范围很高(Wafer#1)。第二种方法的抛光时间较小,并在500 nm上停在SIO 2上,而最终的抛光和首席执行官2 -slurry直至罪显示出良好的步进高度,并具有更好的罪恶晶圆范围(Wafer#2)。
大于 0.1 m,无论是平面化还是未平面化的测试 µ 芯片。凸块侧壁略微倾斜,因此凸块的平面化会略微增加凸块面积,见表 2。平面化工艺似乎还会使软金凸块略微变脏,见图 4。平面化凸块的凸块面积比未平面化凸块大 5% 到 15%。
图3。(a)从左到右的顶行:边缘SEM,能量色散光谱(EDS)分析,显示了TIO 2纳米分布的分布以及高指数平面化a 〜4.25 µm和H〜1.8 µm的高指数平面底物S的红色激光衍射模式。 (b)中排:平面底物u的边缘SEM和红色激光衍射模式(A〜16 µm,H〜4.1 µm)。请注意大型无特征中央和六角形散射模式。(c)A 〜15 µm和H〜7 µm的近距离商业MLA的光学图像,以及(d)平面化弥漫性随机结构(基板M)的光学图像; OLED均在所有这些PE上用TiO 2纳米颗粒的高指数像素层制造。
• 平面化钝化表面 • 铜互连处的轻微凹陷 • 芯片和基板晶圆的清洁和等离子活化 关键工艺挑战: • 钝化材料的选择 • CMP 中的铜垫表面轮廓 • 单个芯片的活化
最近,人们对将微机电系统 (MEMS) 与驱动、控制和信号处理电子设备进行单片集成的制造工艺产生了浓厚的兴趣。这种集成有望提高微机械设备的性能,并降低制造、封装和仪表化这些设备的成本,方法是将微机械设备与电子设备在同一制造和封装过程中结合起来。为了保持模块化并克服 CMOS 优先集成方法的一些制造挑战,我们开发了一种 MEMS 优先工艺。该工艺将微机械设备放置在浅沟槽中,对晶圆进行平面化,并将微机械设备密封在沟槽中。然后,在将设备嵌入沟槽后进行高温退火,然后再进行微电子加工。这种退火可以消除微机械多晶硅的应力,并确保与微电子加工制造相关的后续热处理不会对多晶硅结构的机械性能产生不利影响。然后,这些带有已完成的平面化微机械器件的晶圆被用作传统 CMOS 工艺的起始材料。该工艺的电路成品率已超过 98%。本文介绍了集成技术、该技术的改进以及器件特性的晶圆级参数测量。此外,本文还介绍了使用该技术构建的集成传感器件的性能。
特征尺寸的缩小、互连金属的进步以及对缺陷控制的日益严格的需求都表明,化学机械平面化 (CMP) 对于优化晶圆厂产量的重要性日益增加。每个芯片的更多层需要 CMP 才能达到平面度规格,并且必须将污染保持在最低限度。平面度和纯度是每层能否按预期执行的关键指标。表面异常和残留物可能会影响晶圆产量、设备性能和电子系统的长期可靠性。
增加受控原子和量子比特的数量的一个基本前提是允许应用相应量信号的微结构,例如B.通过整合微波线路。这是通过叠加结构实现的,类似于多层电路板。 PTB 结构由一组厚金属导体层组成,这些层彼此通过电介质隔开,并通过通孔选择性地相互连接。原则上,金属层的数量是不受限制的,因为每一层都具有高度精确的整体平面化。该工艺仅使用符合环境超高真空对原子和离子捕获的严格要求以及低温操作的材料;此外,该结构的高频特性非常优异。