弹性体仍然是一种流行的方法,2,4 人们对由彼此隔离或连接以形成导电通路的 LM 液滴悬浮液组成的材料系统的兴趣日益浓厚。9,10 近年来,后者的努力与基于 LM 的纳米技术 11 的实践相结合,从而开辟了液态金属纳米复合材料研究的新领域。LM 纳米复合材料代表了这样的材料系统:其中 LM 合金(如 EGaIn 或 Galinstan)要么作为纳米级液滴悬浮在液态金属聚合物基质中,要么与金属纳米颗粒混合以形成双相组合物,其中 LM 充当连续基质相。无论哪种情况,LM 纳米复合材料都代表了我们如何定制液态金属材料的电学、介电和热学性能的潜在范例。历史上,改变固体材料此类特性的努力通常集中在填充有刚性金属、陶瓷纳米粒子或碳同素异形体的粒子复合材料上。然而,此类填充材料会导致刚度和机械滞后增加,尤其是在渗透和电导率所需的高浓度下。虽然对于某些应用来说是可以接受的,但对于需要与固体材料和生物组织相匹配的机械柔顺性的计算、机器人和医学等新兴技术来说,这种权衡极大地限制了它们。在这方面,用 LM 纳米液滴代替刚性填料可以显著拓宽纳米复合材料的应用范围。在这里,我们回顾了合成 LM 纳米复合材料的方法的最新进展及其在固体物质传感、驱动和能量收集方面的应用。我们首先总结了合成纳米级 LM 液滴(可在溶剂中形成稳定悬浮液)的技术背景和方法进展。接下来,我们介绍 LM-聚合物纳米复合材料的最新进展,这种复合材料由嵌入在软弹性介质中的 LM 纳米液滴组成。最后,我们讨论了在创建刚性金属纳米颗粒嵌入块体中的材料系统方面所做的平行努力
主要关键词