涨落定理是热力学第二定律对于小系统的基本推广。虽然熵产生Σ对于宏观系统是一个非负的确定性量,但是在微观尺度上,由于不可忽略的热[1,2]或量子[3,4]涨落,熵产生Σ变为随机量。详细的涨落定理通过关系PðΣÞ=Pð−ΣÞ¼expðΣÞ[5]量化了负熵产生事件发生的概率。积分涨落定理对Σ积分后的形式为hexpð−ΣÞi¼1。指数的凹性意味着熵产生平均而言仅为正值,hΣi≥0。涨落定理在任意远离平衡态的一般有效性使得它们在非平衡物理中特别有用。由于这个原因,人们在理论和实验上对经典系统进行了广泛的研究[6,7]。这些研究为从胶体粒子到酶和分子马达[1,2]等微观系统的热力学提供了独特的见解。在量子领域,情况更为复杂。量子涨落定理通常在两点测量 (TPM) 方案中研究[3,4]。在这种方法中,通过在非平衡协议开始和结束时投影测量能量,可以确定量子系统的能量变化,进而确定熵产生[8],以实现个体实现。还提出了基于类拉姆齐干涉术[9,10]和广义测量[11,12]的等效公式。这些方法用于对机械驱动 [13 – 16] 和热驱动 [17,18] 系统进行量子涨落定理的实验测试,使用 NMR、离子阱、冷原子、氮空位中心和超导量子比特装置。TPM 程序成功捕获了系统的离散量子能谱,以及两次测量之间的非平衡量子动力学 [19]。然而,由于其投影性质,它
主要关键词