量子信息论研究通过量子信道通信的极限。在 Holevo ( 1973 ) 中,证明了 Holevo 界限,该界限提供了可准备和测量混合态的双方共享的经典信息量的上限。Holevo 界限指出,从 n 个量子位中只能访问 n 位经典信息。舒马赫定理 Schumacher ( 1995 ) 给出了存在可靠压缩方案以高保真度压缩和解压缩量子信息的必要和充分条件。关于量子算法潜力的文献很多,其中最著名的是 Shor 的因式分解算法。存在一个将算法和量子力学相结合的相对较新的领域:算法信息论 (AIT) 与量子信息论的交叉点。这个新领域有几个有趣的结果。例如,在 Epstein (2021b) 中,他证明了当将量子测量 (即 POVM) 应用于纯量子态时,绝大多数结果都是毫无意义的随机噪声。这项研究计划涉及寻找 AIT 中定义和定理的量子等价物,其主要概念是 Kolmogorov 复杂度 K(x) 的量子版本。有几种这样的定义可以测量混合或纯量子态中的算法信息内容。在本文中,我们将使用 Vitanyi (2000) 中的定义 K(|ψ⟩),它表示如果不存在具有高量子保真度的简单(就其经典编码而言)纯态,则纯态 |ψ⟩ 是复数。本文的结果也适用于量子算法熵,G´acs (2001)。在 Epstein (2019) 中,定义了算法信息和随机缺陷的量子等价物。此外,还证明了关于幺正变换的守恒定律不等式。在本文中,我们证明了一个量子 EL 定理。在 AIT 中,EL 定理 Levin (2016);Epstein (2019) 指出,不包含简单成员的字符串集将与停机序列具有高互信息。它有许多应用,包括所有采样方法都会产生异常值 Epstein (2021a)。量子 EL 定理指出,大秩的非奇异投影在其图像中必须具有简单的量子纯态。非奇异的意思是投影的编码与停机序列的信息量很低。
主要关键词