Delta-sigma (ΔΣ) ADC 广泛用于信号采集和处理应用。因此,这种类型的 ADC 被用作编解码器和助听器,这些设备需要信号路径具有较大的动态范围 [1-4]。与奈奎斯特速率转换器相比,ΔΣ ADC 更易于设计,因为它们不需要具有严格参数的模拟组件。过采样转换器对输入信号带宽进行采样,因此无需使用抗混叠滤波器。通过中等过采样率和增加的采样率,可以设计高分辨率 ADC。这可以有效降低整个功耗,同时保持所需的分辨率 [5]。电压缩放适用于数字电路设计,以降低散热量,同时牺牲速度。已报道了几种解决该问题的技术,例如体驱动电路、SAR 操作、亚阈值操作 [6-9] 和过零电路 [10, 11],但这些电路的性能非常低。delta-sigma ADC 是一种非常高效的结构,具有过采样和噪声整形特性。连续 ΔΣADC 的工艺缩放因子和带宽得到了改善。高性能模拟电路包括无运算放大器流水线 ADC [12, 13]、节能逐次逼近寄存器 (SAR) ADC [14, 15] 和数字校准技术 [16, 17]。为了在时域中处理信号,压控振荡器 (VCO) 起着重要作用 [18-24]。当触发器同步时,VCO 输出会在 VCO 中引入量化误差。
主要关键词