粒子群优化 (PSO) 是一种迭代搜索方法,它使用随机步长将一组候选解决方案围绕搜索空间移动到已知的最佳全局和局部解决方案。在实际应用中,PSO 通常可以加速优化,因为梯度不可用且函数评估成本高昂。然而,传统的 PSO 算法忽略了从单个粒子的观察中可以获得的目标函数的潜在知识。因此,我们借鉴了贝叶斯优化的概念,并引入了目标函数的随机代理模型。也就是说,我们根据目标函数的过去评估拟合高斯过程,预测其形状,然后根据它调整粒子运动。我们的计算实验表明,PSO 的基线实现(即 SPSO2011)表现优异。此外,与最先进的代理辅助进化算法相比,我们在几个流行的基准函数上实现了显着的性能改进。总体而言,我们发现我们的算法实现了探索性和利用行为的理想特性。
主要关键词