Loading...
机构名称:
¥ 2.0

人工智能 (AI) 在 1956 年达特茅斯会议上被历史性地定义为能够从周围环境收集信息并在其中采取有效行动的人工生命形式。1970 年,麻省理工学院的明斯基团队开发了一套机器人系统,称为“Copy Demo”,它可以观察“积木世界”场景并成功重建观察到的多面体块结构(Winston,1972 年)。该系统由观察、规划和操作模块组成,表明每个子问题都极具挑战性,需要进一步研究。因此,人工智能领域分裂成几个专门的子领域。虽然这些子领域已经独立取得了重大进展,但这种过度简化主义模糊了人工智能研究的总体目标。为了超越现状,迈向更为复杂的 AI,我们强调接受亚里士多德整体哲学的重要性,该哲学强调各部分之间的整合要大于各部分之和。大型语言模型 (LLM) 和视觉语言模型 (VLM) 的最新进展已显示出在开放世界环境中识别语言和图像的巨大潜力(OpenAI,2023 年)。例如,LLM 的高级语义处理已被用于将人类指令分解为机器人的高级任务(Wake 等人,2023c、d)。然而,这些现有的多模态基础模型,即使对于 GPT-4V(ision),在实现需要动作预测的细粒度操作方面仍然面临挑战。因此,提出了一种新的具身代理基础模型(Durante 等人,2024b),该模型集成了语言能力、视觉认知、上下文记忆和直觉推理,并能自适应地预测具身动作。这是第一项使用从机器人、游戏和医疗保健任务中收集的具身数据预训练基础模型以开发通用 AI 代理的研究。具身代理被概念化为一个交互式系统,它通过其感知能力与人类交流并与环境交互,采取符合人类意图的动作。这就是为什么我们认为大型具身基础模型的进步是对代理 AI 的重大贡献,使系统能够从各种领域信息、动作、自然语言指令和多模态上下文中解析和推断人类意图。此外,

面向整体智能的代理 AI

面向整体智能的代理 AIPDF文件第1页

面向整体智能的代理 AIPDF文件第2页

面向整体智能的代理 AIPDF文件第3页

面向整体智能的代理 AIPDF文件第4页

面向整体智能的代理 AIPDF文件第5页

相关文件推荐

2023 年
¥1.0
2024 年
¥2.0
2023 年
¥1.0
2024 年
¥1.0
2024 年
¥3.0
2020 年
¥4.0