Loading...
机构名称:
¥ 1.0

基于人工智能的软件的特性有可能重塑传统的软件开发范式。因此,本研究在人工智能工程领域进行了系统的文献综述 (SLR),以确定基于人工智能的系统的软件工程中的独特挑战,这些挑战正在改变传统的软件开发范式。SLR 的范围包括通过严格流程选择的 2018 年至 2023 年期间发表的学术期刊和会议论文集文献。该方法涉及在 Scopus、ScienceDirect、ACM 数字图书馆和 IEEE Xplore 等数据库中使用特定搜索关键字,并严格应用 Kitchenham 的纳入和排除标准,以确保重点突出且相关的审查。本综述对解决与基于人工智能的软件开发相关的挑战、问题和方法的各种研究工作进行了综合总结。重点主题包括人工智能密集型系统开发的需求工程挑战、负责任的软件开发(负责任的人工智能)、负责任的人工智能软件工程路线图的制定、TrustOps 作为人工智能系统开发风险管理方法的应用、在基于人工智能的系统中纳入软件工程方法的必要性,以及探索需求工程实践、人工智能密集型系统开发和机器学习模型开发工具使用的研究。主要发现包括认识到人工智能开发中的道德要求的重要性、风险管理和道德属性的作用,以及在软件开发人员、数据科学家和机器学习专家之间联系需求的挑战。这项研究为参与开发基于人工智能的软件的从业者和研究人员提供了宝贵的见解,以克服现有的挑战并在开发过程中应用适当的方法。

人工智能工程方法路线图分析

人工智能工程方法路线图分析PDF文件第1页

人工智能工程方法路线图分析PDF文件第2页

人工智能工程方法路线图分析PDF文件第3页

人工智能工程方法路线图分析PDF文件第4页

人工智能工程方法路线图分析PDF文件第5页