20 世纪 90 年代中期,提出了两种具有里程碑意义的元启发式算法:粒子群优化和差分进化。它们的初始版本非常简单,但迅速引起了广泛关注。在过去的四分之一世纪中,这两种优化算法的数百种变体已被提出并应用于几乎所有科学或工程领域。但是,到目前为止,尚未对这两种方法的性能进行更广泛的比较。在本文中,对十种粒子群优化和十种差分进化变体进行了比较,从 20 世纪 90 年代的历史变体到 2022 年的最新变体,这些变体在众多单目标数值基准和 22 个实际问题上进行了比较。平均而言,差分进化算法明显优于粒子群优化算法。差分进化相对于粒子群优化的优势与流行度相矛盾:在文献中,粒子群优化算法的使用频率是差分进化算法的两到三倍。粒子群优化比差分进化表现更好的问题确实存在,但相对较少。虽然这个结果可能是选择特定变体、实验设置或用于比较的问题的结果,但粒子群优化变体可能需要重新考虑算法理念,以使其更具竞争力。