Loading...
机构名称:
¥ 1.0

多级阈值处理是计算机视觉中的一个重要操作,计算机视觉是人工智能 (AI) 的一个子领域,用于理解和解释现实世界中的数据。现有的基于图像直方图的多级阈值熵方法主要处理除碎片边界之外的熵信息的最大化,这降低了准确性。这些问题导致阈值精度差且速度慢。为了解决这个问题,我们提出了一种基于相互依赖性的新技术,该技术使用碎片边界,这是一个最小化问题。研究了一个第一手目标函数,它处理碎片边界。传统的多级阈值技术由于穷举搜索过程而计算成本高昂,另一种方法是使用基于自然启发算法的进化计算。本文还提出了一种用于多级阈值的新优化器,称为自适应平衡优化器 (AEO),它是对基本平衡优化器 (EO) 的改进,通过为表现不佳的搜索代理实施自适应分散决策。使用标准基准函数将 AEO 性能与最先进的算法——平衡优化器 (EO)、灰狼优化器 (GWO)、鲸鱼优化算法 (WOA)、松鼠搜索算法 (SSA) 和风驱动优化 (WDO) 算法进行了比较。基于定性和定量分析,AEO 的表现优于 EO、GWO、WOA、SSA 和 WDO。通过使用 AEO 最小化目标函数来获得最佳阈值。对于实验,考虑了 BSDS 500 数据集的 500 张图像。考虑了峰值信噪比 (PSNR)、结构相似性指数 (SSIM) 和特征相似性指数 (FSIM) 等流行指标进行定量分析。在计算复杂度降低的同时,阈值精度存在显著差异。强调了本文的优点,以确保其未来在使用软计算(AI 的一个子领域)的工程应用领域中的应用。

人工智能的工程应用 - Ajith Abraham

人工智能的工程应用 - Ajith AbrahamPDF文件第1页

人工智能的工程应用 - Ajith AbrahamPDF文件第2页

人工智能的工程应用 - Ajith AbrahamPDF文件第3页

人工智能的工程应用 - Ajith AbrahamPDF文件第4页

人工智能的工程应用 - Ajith AbrahamPDF文件第5页