动机和总体愿景 近年来,人工智能系统取得了长足进步,带来了许多成功的应用,这些应用渗透到了我们的日常生活中。然而,我们看到的仍然是狭义人工智能的例子:这些发展通常都集中在一组非常有限的能力和目标上,例如图像解释、自然语言处理、标签分类、预测等等。此外,虽然这些成功可以归功于改进的算法和技术,但它们也与海量数据集和计算能力的可用性密切相关(Marcus 2020)。最先进的人工智能仍然缺乏许多自然包含在智能概念中的能力,例如,如果我们将这些人工智能技术与人类能够做的事情进行比较。这些能力的例子包括可概括性、鲁棒性、可解释性、因果分析、抽象、常识推理、道德推理,以及由隐性和显性知识支持的复杂而无缝的学习和推理集成。目前,人工智能社区的大多数人正在尝试解决人工智能的当前局限性,并使用各种方法创建能够显示更多类似人类特质的系统。主要争论之一是端到端神经网络方法是否可以实现这一目标?或者我们是否需要将机器学习与符号和基于逻辑的人工智能技术相结合?我们认为集成路线是最有前途的,并且
主要关键词