它将输出输入到第一个隐藏层,然后是第二个,最后到输出层(每层都由松散地由神经元建模的节点组成)。机器学习和深度学习都需要训练期,其中有两种不同类型:监督学习和无监督学习。监督学习利用标记数据,因此用于分类和回归,而无监督学习使用未标记数据,因此只能通过聚类和降维来识别模式。机器学习可用于放射学,识别特定病症或将图像分割成几部分。机器学习的一些应用方式包括通过超声(US)检测脂肪肝、通过计算机断层扫描(CT)表征颈动脉斑块以及通过定量冠状动脉CT血管造影预测病变特异性缺血[1,2]。在这种情况下应用机器学习有几个优点和缺点。机器学习可以处理大量数据并识别可能无法检测到的趋势和模式。然而,充分的训练需要大量高质量的数据集。而深度学习可以进行更复杂的分类以及自动特征提取和学习。人们经常使用涉及一定程度人为参与的混合策略。ANN 系统在历史上受到计算能力和训练数据不足的限制。然而,考虑到相对较新的技术和数学进步,以及大数据的可用性,ANN 系统正在重新评估其在医学成像中的应用 [1]。放射科医生一直处于医学技术的前沿,在引导 AI 融入医学方面处于领先地位 [2]。鉴于工作量增加,预测将 AI 融入放射科将协助放射科医生,而不是指导或取代放射科医生,使他们在患者护理中发挥更核心的作用,因为它可以通过图像分类和结果/风险预测提供诊断支持 [3,4]。本文献综述将提供人工智能在医学成像中的应用历史背景,强调人工智能在介入放射学中的应用方式,并承认医生在实施过程中可能面临的挑战。它还将提供克服这些问题的各种建议。
主要关键词