目的和动机:本期特刊旨在提供一套全面的方法、模型和系统,这些方法、模型和系统都属于粒计算的共同范畴,旨在为机器学习方法和应用提供可解释性。可解释人工智能 (XAI) 将允许领域专家验证黑盒 AI 算法或过程提供的结果,以让他们参与决策过程。为此,XAI 方法应该提供对 AI 模型结果背后原因的清晰理解。在这方面,XAI 方法可以采用信息粒化方法,以分层和/或语义方式聚合数据实例,以提供聚合的、人类可理解的解释;以语义组织的方式表示数据实例(例如通过聚类)以查找类原型或反事实;采用符号或神经符号建模来隔离由特定符号激活的神经网络部分(例如,手写符号可以识别为笔画组);并获得语义相关的信息颗粒(例如通过表示学习)作为构建解释的概念。此外,一些人工智能方法构建了可通过设计解释的模型,即不需要任何额外的程序来解释其内部模型,因为它们不是黑匣子。当前研究的主要不足之一是了解可通过设计解释的模型在准确性方面是否与需要通过多种方式解释的黑匣子模型兼容。
主要关键词