基于深度学习的人工智能的最新进展要求对人工智能的运行进行更好的解释,以提高人工智能决策的透明度,特别是在自动驾驶汽车或医疗诊断应用等关键系统中,以确保安全、用户信任和用户满意度。然而,目前的可解释人工智能 (XAI) 解决方案专注于使用更多的人工智能来解释人工智能,而不考虑用户的心理过程。在这里,我们使用认知科学理论和方法来开发下一代 XAI 框架,以促进人机相互理解,并使用计算机视觉人工智能模型作为示例,因为它在关键系统中很重要。具体来说,我们建议为 XAI 配备人类社交互动中的重要认知能力:心智理论 (ToM),即通过将心理状态归因于他人来理解他人行为的能力。我们专注于两种 ToM 能力:(1)推断人类的策略和表现(即机器的 ToM),以及(2)推断人类对 AI 策略的理解和对 AI 的信任(即推断人类的 ToM)。人类认知的计算建模和实验心理学方法在 XAI 开发这两种 ToM 能力中发挥着重要作用,通过将用户的策略与 AI 的策略进行比较并估计用户当前对 AI 策略的理解来提供以用户为中心的解释,类似于现实生活中的老师。增强人机之间的相互理解反过来可以导致更好地采用和信任 AI 系统。因此,该框架强调了认知科学方法对 XAI 的重要性。