糖尿病的全球患病率正在升级,估计表明,到2021年,超过5.366亿个人遭受了折磨,约占全球人口的10.5%。由于与不准确性的严重健康风险(例如低血糖和高血糖)相关的严重健康风险,糖尿病的有效管理,特别是对血糖水平的监测和预测,仍然是一个重大挑战。本研究通过采用混合变压器LSTM(长期短期内存)模型来解决这一关键问题,旨在根据连续葡萄糖监测(CGM)系统的数据增强未来葡萄糖水平预测的准确性。这种创新的方法旨在减少糖尿病并发症的风险并改善患者预后。我们使用了一个数据集,该数据集包含32000多个数据点,其中包括来自中国江苏省苏州市医院收集的八名患者的CGM数据。此数据集包括历史葡萄糖读数和设备校准值,因此由于其丰富性和实时适用性,它非常适合开发预测模型。我们的发现表明,混合变压器LSTM模型显着胜过标准LSTM模型,在预测间隔分别达到1.18、1.70和2.00的均方根误差(MSE)值分别为15、30和45分钟。这项研究强调了先进的机器学习技术在主动管理中的潜力,这是减轻其影响的关键一步。
主要关键词