多元混合模型中随时间变化的关联:在体育分析中的应用 导师:Lisa McFetridge 博士 足球是世界上最受欢迎的运动之一,全球有超过 35 亿球迷。2021 年,足球的全球价值估计为 30.2 亿美元,预计到 2027 年将达到 38.7 亿美元。由于在这项运动中取得成功可以获得巨额经济回报,近年来,所有主要足球俱乐部都开始大量投资于大数据分析以及将统计和机器学习方法应用于体育分析。可穿戴技术的发展促进了此类投资,该技术可以实时监测健康和表现指标,例如球员在比赛和训练场景中的心率、动作和位置。球员生物标志物的动态变化(例如心率变异性)可作为伪变量来衡量他们对训练计划的适应度、比赛中的表现并发现疲劳的发生。如果正确使用,这些信息可以揭示随时间变化的趋势和模式,从而降低受伤风险、促进恢复并最终帮助球员提高健康和表现 (Viegas 2024)。可穿戴技术通常每秒收集多个观察结果,并在一个赛季内积累大量数据。为了对这种密集的纵向数据进行建模,可以使用多元混合效应模型 (Hickey 2016)。这些方法允许随时间对多个生物标志物或指标进行建模,同时捕捉影响球员内部负荷的不同方面,从而提供关键见解,不仅了解每个生物标志物如何独特地影响球员的健康,还了解不同生物标志物如何相互关联。虽然这些见解很有价值,但多元混合模型目前并未充分利用数据的时变性。当前的方法假设生物标志物之间的关系不会随时间而变化。这种时不变相关性的假设在分析随时间自然演变的信息时可能具有限制性并且可能不切实际。为了更好地捕捉这些关系随时间变化的本质,本项目将开发包含随时间变化相关性的新型多元混合模型方法。本项目将为预测体育分析 (PSA) 小组领导的一系列体育分析工作提供信息。为了最大限度地发挥这项工作的潜在影响力,博士生将与其他 PSA 研究人员以及当地精英足球俱乐部(包括在国家联赛顶级联赛中踢球的俱乐部)密切合作,将尖端的数据驱动决策融入他们的流程并实现预期的现实影响。有关项目的更多详细信息,请联系主要主管 l.mcfetridge@qub.ac.uk。Viegas, JM、Dores, H.、Freitas, A.、Cavigli, L.& D'Ascenzi, F., 运动心脏病学的发展:通向更光明的未来之路, Revista Portuguesa de Cardiologia, 2024; 43 (2), 87-89。Hickey, GL, Philipson, P., Jorgensen, A., & Kolamunnage-Dona, R., 事件发生时间和多变量纵向结果的联合建模:最新发展和问题, BMC Medical Research Methodology, 2016; 16 (1), 1-15。
主要关键词