摘要尽管越来越多地研究兴趣,但现有的定向灰色盒模糊剂并不能很好地扩展程序复杂性。在本文中,我们确定了当前有向灰色盒子模糊的两个主要可扩展性挑战。特别是,我们发现传统的覆盖反馈并不总是为达到目标计划点提供卑鄙的指导,并且现有的种子距离机制在具有复杂控制结构的程序中不能很好地运行。为了解决这些问题,我们提出了一个新颖的魔力,名为dafl。dafl选择与目标局部相关的代码零件,并仅从这些部分获得覆盖反馈。此外,考虑到程序执行的数据流语义,它计算精确的种子距离。结果是有希望的。在41个现实世界中,DAFL能够在给定时间内添加4、6、9和5个错误,分别与AFL,AFLGO,Windranger和Beacon相符。此外,在所有模糊剂产生中位数TTE的情况下,DAFL的平均速度至少要快4.99倍,而包括Aflgo,Windranger和Beacon在内的3个最先进的定向绒毛。
主要关键词