Loading...
机构名称:
¥ 4.0

推荐系统已成为在线服务的组成部分,因为它们能够帮助用户在数据海中找到特定信息。但是,现有的研究表明,某些推荐系统容易受到中毒攻击的影响,尤其是涉及学习方案的攻击。中毒攻击是对手对训练模型进行精心制作的数据的注射,目的是操纵系统的建议。基于人工智能的最新进展(AI),此类攻击最近变得重要。目前,我们还没有关于对手为何进行这种攻击的原因,也没有全面了解这种攻击会破坏模型或可能产生的影响的全部能力。虽然已经开发了许多中毒攻击的对策,但它们尚未系统地与攻击的特性联系在一起。因此,评估缓解策略的各自的风险和潜在成功是DIICULT,即使不是不可能。这项调查旨在通过主要专注于中毒攻击及其对策来造成这一差距。这与主要关注攻击及其检测方法的先前调查相反。通过详尽的文献综述,我们为中毒攻击,形式化其维度提供了一种新颖的分类法,并因此组织了文献中描述的31次攻击。此外,我们审查了43个对策,以检测和/或防止中毒攻击,评估其针对特定类型攻击的效率。

对中毒攻击和对策的调查作者

对中毒攻击和对策的调查作者PDF文件第1页

对中毒攻击和对策的调查作者PDF文件第2页

对中毒攻击和对策的调查作者PDF文件第3页

对中毒攻击和对策的调查作者PDF文件第4页

对中毒攻击和对策的调查作者PDF文件第5页