Loading...
机构名称:
¥ 1.0

摘要 - 在本文中,对预测错误对国内电力需求管理性能的影响进行了彻底研究。最初,设计和建模的实时峰值电力需求管理系统使用电池储能系统(BESS),电动汽车(EV)和光伏(PV)系统。模型使用消费者的实时负载需求及其屋顶PV发电能力,以及BESS和EVS的充电限制,为峰值电力需求管理提供了协调的响应。之后,这种实时功率需求管理系统是使用自回归移动平均值和基于人工神经网络的预测技术建模的。预测值用于提供日间的峰值电力需求管理决策。但是,预测过程中的任何重大错误都会导致能源管理系统的能量共享不正确。在这项研究中,使用具有现实负载模式和不确定性的真实配电网络连接的两个不同的客户用于研究此预测错误对能源管理系统功效的影响。研究表明,在某些情况下,预测误差可能超过300%。由于此预测误差而引起的能源支持的平均容量可能会高达0.9 kWh,从而增加电池充电量周期,从而降低电池寿命并增加能源成本。它还研究了环境条件(太阳能日期,温度和湿度)与消费者的电力需求之间的可能关系。考虑到天气状况,提出了一种日常不确定性检测技术,以提供改进的电力需求管理。

预测错误在国内峰值...

预测错误在国内峰值...PDF文件第1页

预测错误在国内峰值...PDF文件第2页

预测错误在国内峰值...PDF文件第3页

预测错误在国内峰值...PDF文件第4页

预测错误在国内峰值...PDF文件第5页