使用数据约束的复发神经网络模型推断大脑互动
机构名称:
¥ 3.0

4加利福尼亚州帕萨迪纳市加州理工学院 *通信:kanaka.rrajan@mssm.edu抽象行为来自许多解剖学和功能上不同的大脑区域的协调活动。现代的实验工具允许空前访问跨越许多相互作用区域的大型神经种群。然而,了解这样的大规模数据集需要两个可扩展的计算模型来提取区域通信的有意义的特征和原则性理论来解释这些特征。在这里,我们引入了基于电流的分解(CurbD),这是一种使用数据约束的复发性神经网络模型来推断大脑相互作用的方法,该模型直接重现实验性的神经数据。Curbd利用了此类模型推断出的功能相互作用,以揭示多个大脑区域之间的定向电流。我们首先表明Curbd准确地隔离了具有已知动力学的模拟网络中的区域间电流。然后,我们将路缘应用于跑步过程中从小鼠获得的多区域神经记录,在帕夫洛维亚调节过程中的猕猴以及记忆回收期间的人类,以证明Curbd在各种神经数据集中脱离了Curbd对脑部互动的广泛适用性。在发育过程中引入,即使是小生物的神经系统也会组织成非常复杂的结构。大脑具有结构模块性(例如,脑区域,层状组织,细胞类型),具有系统发育跨模块的专业化。大脑区域具有惊人的专业化和独特的功能特征。但是,单个大脑区域也经常与整个大脑中的许多其他区域相互作用2。这些宏观电路通过直接投影,多节日回路和更广泛的间接效应(例如神经调节剂释放3)反复连接。因此,在理论上,大脑甚至在简单的行为中都处于活跃状态,从理论上讲,只有一个较小的区域4-6介导的大脑。得出对行为神经基础的理解需要考虑大脑活动的分布性质。,尽管现代实验技术提供了大规模的多区域数据集,但研究人员仍缺乏一种全面的,统一的方法来推断全脑部相互作用和信息流。在这里,我们引入了基于电流的分解(CURBD),这是一个计算框架,利用多区域神经记录的复发性神经网络(RNN)模型来推断

使用数据约束的复发神经网络模型推断大脑互动

使用数据约束的复发神经网络模型推断大脑互动PDF文件第1页

使用数据约束的复发神经网络模型推断大脑互动PDF文件第2页

使用数据约束的复发神经网络模型推断大脑互动PDF文件第3页

使用数据约束的复发神经网络模型推断大脑互动PDF文件第4页

使用数据约束的复发神经网络模型推断大脑互动PDF文件第5页

相关文件推荐

神经网络和大脑
2021 年
¥1.0