Tadesse Hailu Ayane A,Satyasis Mishra B,Davinder Singh Rathee C,Harish Kalla d a Dept.,ECE,SEEEC,SIGNAL和IMAGE PROCESTING SIG,ADAMA科学技术大学,Adama,埃塞俄比亚文章历史:收到:2021年1月10日;修订:2021年2月12日;接受:2021年3月27日;在线发布:2021年6月4日摘要:这项研究工作提出了一种新颖的快速且坚固的模糊C表示基础(FRFCM)分割技术,用于从MR(磁共振)图像中检测脑肿瘤,该技术可以告知放射线医生和医生脑肿瘤的细节。 这种分割技术已用于消除里奇亚的噪声和形态重建的图像。 MR(磁共振)图像特征已通过流行的灰度共发生矩阵(GLCM)和离散小波变换特征提取技术提取。 提取的特征应用于基于拟议的PSO(粒子群优化)的极限学习机(ELM),以分类恶性和良性脑肿瘤的类型,以进行视觉定位。 此外,将将分类结果与现有支持向量机和相关向量机模型进行比较。 在这项研究工作中,PSO算法已更新了拟议的新型多类极限学习机分类器模型的权重,以提高分类器的性能。 为了展示研究的独特性,此外,研究工作提出了通过嵌入式系统平台实施检测和分类的,这可能是研究工作的产品结果。 关键字:,ECE,SEEEC,SIGNAL和IMAGE PROCESTING SIG,ADAMA科学技术大学,Adama,埃塞俄比亚文章历史:收到:2021年1月10日;修订:2021年2月12日;接受:2021年3月27日;在线发布:2021年6月4日摘要:这项研究工作提出了一种新颖的快速且坚固的模糊C表示基础(FRFCM)分割技术,用于从MR(磁共振)图像中检测脑肿瘤,该技术可以告知放射线医生和医生脑肿瘤的细节。这种分割技术已用于消除里奇亚的噪声和形态重建的图像。MR(磁共振)图像特征已通过流行的灰度共发生矩阵(GLCM)和离散小波变换特征提取技术提取。提取的特征应用于基于拟议的PSO(粒子群优化)的极限学习机(ELM),以分类恶性和良性脑肿瘤的类型,以进行视觉定位。此外,将将分类结果与现有支持向量机和相关向量机模型进行比较。在这项研究工作中,PSO算法已更新了拟议的新型多类极限学习机分类器模型的权重,以提高分类器的性能。为了展示研究的独特性,此外,研究工作提出了通过嵌入式系统平台实施检测和分类的,这可能是研究工作的产品结果。关键字:这将帮助医务人员,特别是让放射线医生和医生了解肿瘤的严重性。此外,嵌入式系统平台已用于通过GUI(图形用户界面)显示分类,分割和功能。
主要关键词