Loading...
机构名称:
¥ 2.0

类器官应表现出必不可少的效果,包括器官特异性细胞类型,器官的功能和空间组织的结构。器官技术的出现和进展是由几个重要发现引起的(图1)。首先是从角质形成细胞和3T3成纤维细胞的共培养系统中观察到实际组织的形成。[4]自组织是组织的基本方面之一,首先是通过两种不同的方法观察到的,即重新进行分离的单个细胞的结构模式。[5,6]为结构组织建立3D培养方法始于细胞外矩阵(ECM)的发展。在1980年代后期,Bissell及其同事观察到,富含层粘连蛋白蛋白的凝胶可以用作地下膜,以分散和形态发生乳腺上皮细胞。[7,8]在1990年代,据报道,除了它们在物理支持中的主要作用外,ECM组成还可以通过与基于inte-grin的焦点粘附途径相互作用来调节基因表达。[9]最后,在2009年,Clevers组报告说,将单个肠干细胞嵌入ECM替代品中,产生了类似于天然肠道组织上皮的隐窝样结构,该结构是第一批类动物。[10]基于这些识别,包括谱系特异性遗传程序的生化线索已纳入了3D器官培养物中。已经提出了可自定义的水凝胶基质来形成内部网络概括通过释放形态剂,生长因子或形态抑制剂,多个研究组使用胚胎干细胞(ESC)或成年干细胞(ASC)迅速开发了各种器官模型;其中包括肠道,[10]胃,[11]肝脏,[12] pan-creas,[13]前列腺,[14]和脑[15]类器官。同时,几个小组设计了血管化技术,以体现在生理上接近其实际对应物的微环境。微流体系统,[16]内皮细胞包被的模块,[17]和血管内皮生长因子递送系统[18]已被证明是体外血管系统,可以促进氧气或营养物质转运到内部质量的类队。在2010年代后期,由于生物材料和生物材料的累积机制的累积信息以及“器官定制”的时代已经开始。

高级器官研究的生物工程方法

高级器官研究的生物工程方法PDF文件第1页

高级器官研究的生物工程方法PDF文件第2页

高级器官研究的生物工程方法PDF文件第3页

高级器官研究的生物工程方法PDF文件第4页

高级器官研究的生物工程方法PDF文件第5页