图S1。 RBV 3 SB 5的退火实验。 (a)退火循环的示意图。 (b)样品的退火过程。 时间轴的数字表示单个周期的退火时间。 退火实验的代表性STM地形显示在(D-G)中。 (C1,C2)原始RB表面的STM构图。 设定点:(C1)1 UM×1 UM,偏置电压V s = -300 mV,隧道电流i t = 20 pa; (C2)20 nm×20 nm,V s = -200 mV,i t = 0.1 Na。 (D1 -G1)Rb表面的地形(1 UM×1 UM,V s = -300 mV,I T = 20 pa)在退火循环D -G下标记为(b)。 (d2-g2)(d1-g1)(v s = -300 mV,i t = 20 pa)的相应的缩放形状图像,可以清楚地观察到RB的解吸:更多的RB效率出现在(D2)中; (E2)和(F2)中的短距离RB-√3×1重建形式;最后,RB-√3×√3重建显示在(G2)中。图S1。RBV 3 SB 5的退火实验。 (a)退火循环的示意图。 (b)样品的退火过程。 时间轴的数字表示单个周期的退火时间。 退火实验的代表性STM地形显示在(D-G)中。 (C1,C2)原始RB表面的STM构图。 设定点:(C1)1 UM×1 UM,偏置电压V s = -300 mV,隧道电流i t = 20 pa; (C2)20 nm×20 nm,V s = -200 mV,i t = 0.1 Na。 (D1 -G1)Rb表面的地形(1 UM×1 UM,V s = -300 mV,I T = 20 pa)在退火循环D -G下标记为(b)。 (d2-g2)(d1-g1)(v s = -300 mV,i t = 20 pa)的相应的缩放形状图像,可以清楚地观察到RB的解吸:更多的RB效率出现在(D2)中; (E2)和(F2)中的短距离RB-√3×1重建形式;最后,RB-√3×√3重建显示在(G2)中。RBV 3 SB 5的退火实验。(a)退火循环的示意图。(b)样品的退火过程。时间轴的数字表示单个周期的退火时间。退火实验的代表性STM地形显示在(D-G)中。(C1,C2)原始RB表面的STM构图。设定点:(C1)1 UM×1 UM,偏置电压V s = -300 mV,隧道电流i t = 20 pa; (C2)20 nm×20 nm,V s = -200 mV,i t = 0.1 Na。(D1 -G1)Rb表面的地形(1 UM×1 UM,V s = -300 mV,I T = 20 pa)在退火循环D -G下标记为(b)。(d2-g2)(d1-g1)(v s = -300 mV,i t = 20 pa)的相应的缩放形状图像,可以清楚地观察到RB的解吸:更多的RB效率出现在(D2)中; (E2)和(F2)中的短距离RB-√3×1重建形式;最后,RB-√3×√3重建显示在(G2)中。
主要关键词