Loading...
机构名称:
¥ 13.0

在本文中,我们计算最小输出熵的确切值以及作用于基质代数m n的非常大的量子通道的完全有限的最小熵。我们的新简单方法取决于局部紧凑的量子组的理论,我们的结果使用了一个新的,精确的描述,对1 的确,我们的方法甚至允许在量子超组上使用卷积运算符。 这使我们能够将熵和能力的计算的主题平均连接到子因子平面代数。 我们还给出了每个被考虑的量子通道的经典能力的上限,这在交换案件中已经很敏锐。 令人惊讶的是,我们通过直接计算观察到,一些傅立叶乘数可以标识直接量子通道的经典示例(作为dephasing通道或去极化通道)的总和。 的确,我们表明,对Unital Qubit通道的研究可以看作是Q8的von Neumann代数上傅立叶乘数理论的一部分。 出乎意料的是,我们还将(量子)组的Ergodic动作连接到该计算主题,从而使某些转移到其他渠道。 我们还连接Werner的量子谐波分析。 最后,我们研究了纠缠的破坏和PPT傅立叶乘数,我们表征了有条件的期望,这些期望正在纠缠中断。的确,我们的方法甚至允许在量子超组上使用卷积运算符。这使我们能够将熵和能力的计算的主题平均连接到子因子平面代数。我们还给出了每个被考虑的量子通道的经典能力的上限,这在交换案件中已经很敏锐。令人惊讶的是,我们通过直接计算观察到,一些傅立叶乘数可以标识直接量子通道的经典示例(作为dephasing通道或去极化通道)的总和。的确,我们表明,对Unital Qubit通道的研究可以看作是Q8的von Neumann代数上傅立叶乘数理论的一部分。出乎意料的是,我们还将(量子)组的Ergodic动作连接到该计算主题,从而使某些转移到其他渠道。我们还连接Werner的量子谐波分析。最后,我们研究了纠缠的破坏和PPT傅立叶乘数,我们表征了有条件的期望,这些期望正在纠缠中断。

量子信息理论通过量子组上的傅立叶乘数

量子信息理论通过量子组上的傅立叶乘数PDF文件第1页

量子信息理论通过量子组上的傅立叶乘数PDF文件第2页

量子信息理论通过量子组上的傅立叶乘数PDF文件第3页

量子信息理论通过量子组上的傅立叶乘数PDF文件第4页

量子信息理论通过量子组上的傅立叶乘数PDF文件第5页

相关文件推荐