基于搜索的系统已被证明可用于零和博弈中的规划。然而,基于搜索的方法具有重要的缺点。首先,搜索算法的决策大多是不可解释的,这在需要可预测性和信任的领域(例如商业游戏)中是个问题。其次,基于搜索的算法的计算复杂性可能会限制其适用性,特别是在资源与其他任务(例如图形渲染)共享的环境中。在这项工作中,我们介绍了一种用于合成实时战略 (RTS) 游戏的程序化策略的系统。与搜索算法相比,程序化策略更容易解释,并且一旦程序被合成,往往会很高效。我们的系统使用一种简化领域特定语言 (DSL) 的新算法和一种通过自对弈合成程序的本地搜索算法。我们进行了一项用户研究,招募了四名专业程序员来开发 µ RTS(一款极简 RTS 游戏)的编程策略。结果表明,通过我们的方法合成的程序可以超越搜索算法,并且可以与程序员编写的程序相媲美。