复杂网络是社会、生物、物理和工程系统中的重要范式,用于理解新兴行为、弹性、可控性、影响力和传输等多种现象 [1-11]。人们广泛关注的一个问题是复杂网络中的信息动力学,以了解传播、存储和处理等方面 [12]。经典系统中已经考虑了这些方面,突出的例子包括万维网、大脑和机器学习中的神经网络。近年来,人们还探索了基于量子系统设计网络的可能性 [13,14]。据报道,复杂网络在量子通信 [15,16]、量子生物学 [17-19] 和新兴量子现象 [20-25] 中都有应用。在这些情况下,网络链接可以通过 (量子) 节点之间的相干耦合 [ 26 – 32 ] 以及通过量子关联 [ 21 , 33 , 34 ] 或传输信号 [ 35 – 37 ] 来建立,重点是高效、安全的能量和信息传输以及新出现的复杂现象。最近,人们也开始探索量子网络处理信息的能力。通过结合神经网络的性质和量子领域独有的特征,量子神经网络有望比经典神经网络提供多种优势,例如有效维度更高、内存容量呈指数级增长,以及训练和学习速度更快 [ 38 , 39 ]。在此背景下,最近还提出了基于量子比特网络将储存器计算 (RC) 扩展到量子领域的首个提案 [ 40 ]。 RC 是一种三层(循环)神经网络,特别适合解决时间任务 [41]。近年来,经典 RC [41-43] 的几种实现已在光子学、自旋电子学、力学和生物系统 [44-53] 中得到实现。众所周知,通过利用高维物理系统、内部存储器和非线性,RC 可以实现良好的性能 [41,54]。至于系统规模,可以在经典系统中考虑大型储存器网络,或者在量子系统中作为一种有前途的替代方案。事实上,对于量子网络,即使节点数量减少也能显示出巨大的希尔伯特空间,这是扩展 RC 的主要动机之一
主要关键词