摘要:新兴研究报告称,功能性大脑网络会随着年龄的增长而发生变化。图论用于了解与年龄相关的大脑行为和功能差异,并使用脑电图 (EEG) 检查区域之间的功能连接。正常衰老对工作记忆 (WM) 状态下的功能网络和区域间同步的影响尚不清楚。在本研究中,我们应用图论来研究衰老对静息状态下网络拓扑的影响以及在执行视觉 WM 任务期间对衰老 EEG 信号进行分类。我们记录了 20 名健康中年人和 20 名健康老年受试者睁眼、闭眼和执行视觉 WM 任务时的脑电图。EEG 信号用于构建功能网络;节点由 EEG 电极表示;边表示功能连接。计算了包括全局效率、局部效率、聚类系数、特征路径长度、节点强度、节点中介中心性和同配性的图论矩阵来分析网络。我们应用了 K 近邻 (KNN)、支持向量机 (SVM) 和随机森林 (RF) 三个分类器对两组进行分类。分析显示老年组的网络拓扑特征显著减少。在睁眼、闭眼和视觉 WM 任务状态下,老年组的局部效率、全局效率和聚类系数显著降低。KNN 在视觉 WM 任务中实现了 98.89% 的最高准确率,并且比其他分类器表现出更好的分类性能。我们对功能网络连接和拓扑特征的分析可以用作探索人类大脑正常与年龄相关的变化的适当技术。