Loading...
机构名称:
¥ 1.0

感知涉及通过处理连续的多模态感官信息流来理解我们周围的世界。在此过程中,人类大脑会产生电活动,这些电活动可以在各种场景和任务中测量,以阐明连续感知的神经基础。这项研究表明,大脑电活动与感官输入的特定属性同步,这种现象称为神经追踪(Obleser 和 Kayser,2019 年)。最近的研究表明,侵入式和非侵入式电生理记录都可以稳健地检测到神经追踪(Lalor 等人,2006 年;Ding 和 Simon,2012 年;Gross 等人,2013 年;Zion Golumbic 等人,2013 年),为研究越来越复杂的涉及连续现实刺激(如语音和音乐)的任务中的感知提供了客观的测量方法。听觉感知的情况尤为引人注目。神经信号能够可靠地跟踪连续声音的幅度包络(包络跟踪)(Lalor 等人,2009 年)的发现引领了新的研究方向。首先,包络跟踪测量已使一系列关于现实多说话者场景中的听觉注意力的研究成为可能(例如,参见 COCOHA 项目,H2020.2.1.1.4。ID = 644732),表明用侵入性皮层脑电图 (ECoG) 以及非侵入性脑电图和脑磁图 (EEG/MEG) 记录的信号以不同的方式跟踪有人注意和无人注意的声音(Ding 和 Simon,2012 年;Zion Golumbic 等人,2013 年;O'Sullivan 等人,2014 年、2019 年)。这一开创性的发现为脑机接口研究开辟了一个全新的方向,有望用于脑控助听器等新型设备(Eyndhoven 等人,2017 年;O'Sullivan 等人,2017 年;Ceolini 等人,2020 年)。一项平行的研究表明,可以同时跟踪同一刺激的多个属性(O'Sullivan 等人,2016 年;Di Liberto 等人,2021a 年;Gillis 等人,2021 年)。在语音聆听的背景下,皮质信号被证明可以逐步跟踪语音信号的高级属性,从声学特征(Lalor 和 Foxe,2010;Ding 等人,2014)到语言单位(Di Liberto 等人,2015、2018b;Brodbeck 等人,2018;Lesenfants 等人,2019)、韵律(Myers 等人,2019;Teoh 等人,2019)和语义内容(Broderick 等人,2018、2021;Weissbart 等人,2020)。因此,神经跟踪测量可以通过为我们提供指向不同处理阶段的不同客观指标,为语音的分层编码提供丰富的视图。

社论:神经追踪:缩小神经生理学与转化医学之间的差距

社论:神经追踪:缩小神经生理学与转化医学之间的差距PDF文件第1页

社论:神经追踪:缩小神经生理学与转化医学之间的差距PDF文件第2页

社论:神经追踪:缩小神经生理学与转化医学之间的差距PDF文件第3页

社论:神经追踪:缩小神经生理学与转化医学之间的差距PDF文件第4页

相关文件推荐

2023 年
¥1.0
2022 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2020 年
¥3.0
2022 年
¥1.0