摘要 — 在本文中,我们开发了一个深度强化学习 (DRL) 框架,以在发电不确定性的情况下管理以产消者为中心的微电网中的分布式能源 (DER)。不确定性源于影响住宅太阳能光伏 (PV) 板发电的不同天气条件(即晴天与阴天)。在我们提出的系统模型中,微电网由传统电力消费者、具有本地电池存储的产消者和分销商组成。产消者和分销商配备了人工智能 (AI) 代理,它们相互作用以最大化他们的长期回报。我们研究了天气条件对储能充电/放电的影响,以及产消者向微电网注入的电量。为了证明所提出方法的有效性,我们使用 Deep-Q 网络 (DQN) 实现了 DRL 框架。我们的数值结果表明,所提出的分布式能源管理算法可以有效应对发电不确定性,并且对天气预测误差具有鲁棒性。最后,我们的结果表明,在住宅侧采用储能系统可以缓解发电过剩期间的限电现象。
主要关键词