Loading...
机构名称:
¥ 1.0

摘要 — 有效的患者监测对于及时干预和改善医疗结果至关重要。传统的监测系统通常难以处理生命体征波动的复杂动态环境,从而导致延迟识别危急情况。为了应对这一挑战,我们提出了一种使用多智能体深度强化学习 (DRL) 的新型 AI 驱动患者监测框架。我们的方法部署了多个学习代理,每个代理都专用于监测特定的生理特征,例如心率、呼吸和体温。这些代理与通用医疗监测环境交互,学习患者的行为模式,并根据估计的紧急程度做出明智的决策以提醒相应的医疗应急小组 (MET)。在本研究中,我们使用来自两个数据集的真实生理和运动数据来评估所提出的多智能体 DRL 框架的性能:PPG-DaLiA 和 WESAD。我们将结果与几个基线模型进行了比较,包括 Q-Learning、PPO、Actor-Critic、Double DQN 和 DDPG,以及 WISEML 和 CA-MAQL 等监测框架。我们的实验表明,所提出的 DRL 方法优于所有其他基线模型,可以更准确地监测患者的生命体征。此外,我们进行超参数优化,以微调每个代理的学习过程。通过优化超参数,我们提高了学习率和折扣因子,从而提高了代理在监测患者健康状况方面的整体表现。与传统方法相比,我们的 AI 驱动的患者监测系统具有多种优势,包括能够处理复杂和不确定的环境、适应不同的患者状况以及在没有外部监督的情况下做出实时决策。然而,我们发现了与数据规模和未来生命体征预测相关的局限性,为未来的研究方向铺平了道路。

自适应多智能体深度强化学习,实现及时的医疗干预

自适应多智能体深度强化学习,实现及时的医疗干预PDF文件第1页

自适应多智能体深度强化学习,实现及时的医疗干预PDF文件第2页

自适应多智能体深度强化学习,实现及时的医疗干预PDF文件第3页

自适应多智能体深度强化学习,实现及时的医疗干预PDF文件第4页

自适应多智能体深度强化学习,实现及时的医疗干预PDF文件第5页

相关文件推荐