神经影像学中的可重复性危机,尤其是在研究动力不足的情况下,引发了人们对我们重现、复制和推广研究结果的能力的怀疑。作为回应,我们看到了为神经科学家提供的建议指南和原则的出现,这些建议被称为“良好科学实践”,用于开展更可靠的研究。尽管如此,每项研究在分析和统计方法的结合上仍然几乎是独一无二的。虽然考虑到设计和脑数据记录的多样性,这是可以理解的,但它也代表了可重复性的一个显著点。在这里,我们提出了一个非参数置换统计框架,主要用于神经生理数据,以便对非负信息测量进行组级推断,包括信息论、机器学习或距离测量的指标。该框架支持固定和随机效应模型,以适应个体间和会话间的变化。使用数值模拟,我们比较了两个组模型的地面实况检索的准确性,例如用于多重比较的测试和聚类校正。然后,我们使用空间均匀的 MEG 和非均匀的颅内神经生理数据重现并扩展了现有结果。我们展示了如何使用该框架来提取整个人群中刻板的任务和行为相关影响,涵盖从大脑区域的局部水平、区域间功能连接到总结网络属性的测量等各个方面。我们还介绍了一个名为 Frites 1 的开源 Python 工具箱,其中包括使用信息论指标(例如用于提取认知大脑网络的单次试验功能连接估计)的拟议统计管道。总之,我们认为这个框架值得认真关注,因为它的稳健性和灵活性可以成为统计方法统一化的起点。
主要关键词