Loading...
机构名称:
¥ 1.0

深度学习使研究人员能够从果蝇、老鼠甚至人类中生成越来越复杂的连接组。这些数据可以帮助神经科学家了解大脑的工作原理,以及大脑结构在发育和疾病过程中的变化。但神经连接并不容易绘制。2018 年,利希特曼与加利福尼亚州山景城谷歌连接组学负责人维伦·贾恩联手,后者正在为他的团队的人工智能算法寻找合适的挑战。贾恩说:“连接组学中的图像分析任务非常困难。你必须能够在很远的距离内追踪这些细线,即细胞的轴突和树突,而传统的图像处理方法犯了太多错误,以至于它们对这项任务基本上毫无用处。”这些线可以比一微米还细,延伸到数百微米甚至毫米的组织。深度学习算法提供了一种自动分析连接组学数据的方法,同时仍能实现高精度。在深度学习中,研究人员可以使用包含感兴趣特征的注释数据集来训练复杂的计算模型,以便快速识别其他数据中的相同特征。“当你进行深度学习时,你会说,‘好吧,我只举几个例子,你自己想办法解决一切’,”德国海德堡欧洲分子生物学实验室的计算机科学家 Anna Kreshuk 说。但即使使用深度学习,Lichtman 和 Jain 在尝试绘制人类大脑皮层片段时也面临着艰巨的任务 1 。仅对 5,000 个左右极薄的组织切片进行成像就花了 326 天。两位研究人员花了大约 100 个小时手动注释图像和追踪神经元,以创建“地面实况”数据集来训练算法,这种方法被称为监督机器学习。然后,训练有素的算法自动将图像拼接在一起,并识别神经元和突触以生成最终的连接组。 Jain 的团队为解决这个问题投入了大量的计算资源,包括数千个张量处理单元 (TPU),这是谷歌内部专为神经网络机器学习而打造的图形处理单元 (GPU)。Jain 说,处理这些数据需要几个月的时间,大约需要一百万个 TPU 小时,之后人类志愿者以协作的方式校对和纠正连接组,“有点像谷歌文档”,Lichtman 说。他们说,最终结果是任何物种中以这种细节程度重建的最大数据集。尽管如此,它只代表了 0.0001%

深度学习改变图像分析的五种方式

深度学习改变图像分析的五种方式PDF文件第1页

深度学习改变图像分析的五种方式PDF文件第2页

深度学习改变图像分析的五种方式PDF文件第3页

相关文件推荐

2025 年
¥18.0
2020 年
¥1.0