Loading...
机构名称:
¥ 2.0

摘要:广泛用于灌溉的水渠网络同样是向附近地区输送微电能的良好来源。这种系统的一个实际例子是巴基斯坦 Renala Khurd 的微型水力发电与国家电网的结合,即水电网配置。除了罕见的 Renala Khurd 水力发电示例外,太阳能光伏发电与主流网络的结合,即太阳能光伏电网配置,也得到了广泛应用。主要分布式发电源组合的综合运行在经济性和可靠性方面具有不同的运行属性,需要在安装前进行量化。到目前为止,已经模拟了各种主要分布式发电源组合,并报告了它们对项目经济性和可靠性的累积影响。需要对各种配置进行详细的经济性和可靠性评估,以便可持续且具有成本效益地选择配置。本研究提出了一种太阳能-水力-电网三联产组合,并采用最佳规模方案来降低太阳能系统规模和电网运营成本。使用固定水电和可变太阳能及电网系统以及许多预定义约束,开发了一种基于遗传算法的最优定型公式。在 HOMER Pro 软件中模拟水电-电网、太阳能-电网和电网-水电-太阳能配置,以分析经济影响,并在项目的各种配置下进行可靠性评估。最后,将遗传算法的最优值提供给 HOMER Pro 软件搜索空间,以模拟电网-水电-太阳能配置。结果表明,水电-电网配置的净现值 (NPC) 比电网-水电-太阳能配置低 23%,而未进行优化定型的电网-水电-太阳能的 NPC 比太阳能-电网配置低 40%,而采用遗传算法的电网-太阳能-水电的 NPC 比水电-电网配置低 36%,比不使用遗传算法的太阳能-电网-水电低 50.90%,比电网-太阳能配置低 17.1%,从而证明利用三联产能源集成是对有运河水电地区的可行解决方案。

巴基斯坦 Renala Khurd 案例研究

巴基斯坦 Renala Khurd 案例研究PDF文件第1页

巴基斯坦 Renala Khurd 案例研究PDF文件第2页

巴基斯坦 Renala Khurd 案例研究PDF文件第3页

巴基斯坦 Renala Khurd 案例研究PDF文件第4页

巴基斯坦 Renala Khurd 案例研究PDF文件第5页

相关文件推荐

2024 年
¥3.0
2024 年
¥1.0
2017 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2019 年
¥1.0
2021 年
¥3.0
2024 年
¥1.0
2023 年
¥1.0
2012 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2022 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2021 年
¥1.0
2021 年
¥1.0