树突:输入(如图 1 所示)。这是神经元的示意图,它基本上展示了生物神经元如何从其他来源接收输入,组合该输入,然后执行一般操作。这类似于人类大脑如何从经验和例子中学习。树突会从其他神经元接收信号,将它们传输到细胞体,细胞体会执行一些功能;这个功能可能是求和或乘法。在执行完一组输入后,它会被传输到下一个。我们的目标是建立一个网络来做到这一点。一个典型的大脑中可以找到一个由 100 亿个神经元组成的网络。轴突:输出,突触:链接,细胞体:处理器,树突:输入(如图 1 所示)。这是神经元的示意图,它基本上展示了生物神经元 [4] 如何从其他来源接收输入,组合该输入,然后执行一般操作。这类似于人类大脑如何从经验和例子中学习。树突状神经元会接收来自其他神经元的信号,将其传输到细胞体,细胞体会执行一些功能;这些功能可能是求和或乘法。在执行完一组输入后,它会被传输到下一个。我们的目标是建立一个网络来做到这一点。我们对开发人工神经网络 (ANN) 感兴趣,主要有两个原因: