决策理论中最重要的挑战之一是如何将贝叶斯理论的规范预期与概率推理中常见的明显谬误相协调。最近,贝叶斯模型受到这样的见解的推动,即明显的谬误是由于估计(贝叶斯)概率的抽样误差或偏差造成的。解释明显谬误的另一种方法是调用不同的概率规则,特别是量子理论中的概率规则。可以说,量子认知模型为大量发现提供了更统一的解释,从基线经典视角来看,这些发现是有问题的。这项工作解决了两个主要的相应理论挑战:首先,需要一个结合贝叶斯和量子影响的框架,认识到人类行为中存在两者的证据。其次,有经验证据超越了任何当前的贝叶斯和量子模型。我们开发了一个概率推理模型,无缝集成了贝叶斯和量子推理模型,并通过顺序采样过程进行了增强,将主观概率估计映射到可观察的反应。我们的模型称为量子顺序采样器,它与目前领先的贝叶斯模型贝叶斯采样器 (Zhu、Sanborn 和 Chater,2020) 进行了比较,使用了一项新实验,产生了迄今为止概率推理中最大的数据集之一。量子顺序采样器包含几个新组件,我们认为这些组件为概率推理提供了一种理论上更准确的方法。此外,我们的实证测试揭示了一种新的、令人惊讶的系统性概率高估。
主要关键词