近年来,大语言模型(LLM)的整合彻底改变了机器人技术领域,使机器人能够以人类的熟练程度进行交流,理解和理性。本文探讨了LLMS对机器人技术的多方面影响,以应对在各个领域中利用这些模型的关键挑战和机会。通过对核心机器人技术元素(通信,感知,计划和控制)中的LLM应用进行分类和分析,我们旨在为寻求将LLMS集成到其机器人系统中的研究人员提供可行的见解。我们的调查重点是开发了GPT-3.5后的LLM,主要是基于文本的模式,同时还考虑了多模式的感知和控制方法。我们提供了迅速工程的全面指南和示例,从而促进初学者对基于LLM的机器人解决方案的访问。通过教程级别的示例和结构化的及时构建,我们说明了如何将LLM引导的增强无缝集成到机器人技术应用中。这项调查是研究人员在LLM驱动机器人技术的不断发展的景观方面的路线图,为利用语言模型在Robotics开发中的力量提供了全面的概述和实用指南。
主要关键词