人工智能(AI)在医疗保健中的整合正在彻底改变诊断和治疗程序,提供了前所未有的准确性和效率。然而,由于对信任,透明度和可解释性的关注,许多高级AI模型(通常被描述为“黑匣子”)的不透明度在采用方面造成了挑战,尤其是在像医疗保健这样的高风险环境中。可解释的AI(XAI)通过提供一个框架不仅可以实现高性能,而且还提供了对决策方式的见解,从而解决了这些问题。本研究探讨了XAI技术在医疗保健中的应用,重点是疾病诊断,预测分析和个性化治疗建议等关键领域。该研究将分析各种XAI方法,包括模型 - 现实方法(石灰,外形),可解释的深度学习模型以及XAI的领域特定应用。它还评估了道德意义,例如问责制和偏见缓解,以及XAI如何促进临床医生与AI系统之间的协作。最终,目标是创建既有功能又值得信赖的AI系统,从而促进在医疗保健领域的广泛采用,同时确保患者的道德和安全成果。