抽象的群体优化算法受到生物群的集体行为的启发,是一种有前途的工具,用于解决优化传统方法通常无效的复杂系统的问题。但是,离群值的问题可能会严重影响找到最佳解决方案的过程。因此,研究群算法中检测和处理异常值(例如粒子群优化(PSO))的方法是一项紧急任务,具有提高这些算法在各种实际应用中的效率和可靠性的巨大潜力,例如无人机控制系统,金融系统,环境控制和建模系统。本文涉及群体优化算法(例如PSO)中离群值的问题。提供了现有的管理异常值的方法,包括自适应方法,使用群拓扑,混合算法等的方法。分析了每种方法的优点和缺点。特别关注新的有前途的领域,例如神经网络和增强学习的组合,以开发更有效和适应性的群算法。本文针对优化领域的研究人员和从业人员,他们有兴趣提高群体算法的效率和可靠性。
主要关键词