∗此处报告的结果先前是在题为“需求分析师从机器学习中学习什么?”的论文中分发的。当前的标题从Fudenberg和Liang(2019)的开创性作品中汲取了灵感。我们感谢Annie Liang的详细评论和建议以及Yiting Chen,Emel Filiz-Ozbay,Brian Jabarian,Michael Jordan,Daniel Martin,Yusufcan Masatlioglu,Sendhil Mullainathan,Sara Nei Quline和Anna Vakarova进行有用的对话。本文也从D-TEA的参与者(决策:理论,实验和应用),RUD(风险,不确定性和决策),WEAI(WEAI(WEAI)(国际西方经济协会),MLESC24(经济学夏季夏季会议),ESIF-AIML(经济学和AI+ML MEL)和几个大学的一些大学的建议中,也有益于介绍。Ellis感谢由国家科学基金会三脚架计划资助的数据科学研究所(FODSI)的基础,以及加利福尼亚大学伯克利分校的西蒙斯计算机理论研究所的热情款待。在本材料中表达的意见,发现和结论是作者的意见。†埃利斯:加利福尼亚大学伯克利分校(khkellis@berkeley.edu);卡里夫:加利福尼亚大学伯克利分校(kariv@berkeley.edu);奥兹贝:马里兰大学(ozbay@umd.edu)。
主要关键词