Loading...
机构名称:
¥ 1.0

体现的人工智能(EAI)系统本质上是网络物理系统(CPS),因为它们整合了计算算法和物理组件。这些系统可以通过传感器和执行器感知并与环境互动,从而实现实时,上下文感知的决策。通过整合这些元素,EAI系统可以在不同的设置中执行复杂的任务,从而使计算模型与物理世界动态保持一致。这种集成是机器人,自动驾驶汽车和其他在物理空间内运行的AI驱动技术的基础。EAI CP的一种突出的应用是机器人技术,因为EAI涉及将人工智能嵌入物理实体,尤其是机器人,使这些物理实体具有感知,学习和与周围环境动态的能力。这种方法有助于机器人发展和适应环境变化。一个值得注意的例子是AI人类人物,它利用了Openai的尖端技术。它展示了人形生物的高级能力,可以理解其环境并恰当地响应各种刺激,这标志着智能,互动机器的发展大步迈进。EAI CP必须整合各种功能,从环境感知和从事物理互动到执行复杂的任务。此集成涉及协调各种组件,例如传感器数据分析,复杂有关EAI背景的更多信息,请参阅以下文档:https://cacm.acm.acm.org/blogcacm/the-role-o-of-autonicous-machine-machine-computing-inhape--inhaping-the-ahaping-the-apoping-the-autonomy- https://cacm.acm.org/blogcacm/a-brief-history-of-embodied-artificial-intelligence-and-its-future-outlook/ https://cacm.acm.org/blogcacm/building-computing-systems-for-embodied-artificial-intelligence/ https://cacm.acm.org/blogcacm/the-value-of-data-in-embodied-artificial-intelligence/ https://cacm.acm.org/blogcacm/building-foundation-models-for-embodied-artificial-intelligence/ Nonetheless, EAI CPS is extremely demanding on computing to achieve flexibility, computing efficiency, and可伸缩性,我们总结了下面构建EAI CP的当前技术挑战:•复杂的软件堆栈挑战:复杂性会滋生僵化。

请致电论文

请致电论文PDF文件第1页

请致电论文PDF文件第2页

请致电论文PDF文件第3页

相关文件推荐

2025 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
2025 年
¥2.0
2025 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
2023 年
¥1.0
2024 年
¥1.0
2016 年
¥8.0
1900 年
¥8.0
2025 年
¥1.0
2024 年
¥1.0