Loading...
机构名称:
¥ 1.0

摘要近年来,机器学习(ML)和人工智能(AI)模型已成为各种业务运营不可或缺的一部分,尤其是在人力资源(HR)系统中。这些模型主要用于在招聘,绩效评估和员工管理中自动化决策过程,从而提高效率和简化任务。然而,这些自动化系统的日益使用引起了人们对偏见的存在的重大关注,这可能导致歧视性实践。这样的偏见可能排除合格的候选人和减少机会,同时还为公司声誉带来了重大风险,并带来潜在的法律和道德后果。本文通过探索与人力资源相关的ML模型中偏见的根本原因并提出缓解措施的最佳实践来解决这些挑战。它在人力资源决策制定的背景下对公平概念和定义进行了彻底的研究,强调了基于所使用的特定模型和数据集选择适当缓解技术的复杂性质。通过对各种缓解策略的经验评估,该研究表明,没有任何一种方法能够完全满足所有公平指标,从而强调了准确性和公平性之间的固有权衡。这些发现为优化这些权衡提供了宝贵的见解,并为实现自动人力资源系统中更公平,公正的结果提供了可行的建议。此外,这项研究强调了进一步研究和讨论以提高ML模型中透明度和公平性的持续需求,从而有助于更公平的人力资源景观。

人力资源决策系统中偏见和缓解的全面策略

人力资源决策系统中偏见和缓解的全面策略PDF文件第1页

人力资源决策系统中偏见和缓解的全面策略PDF文件第2页

人力资源决策系统中偏见和缓解的全面策略PDF文件第3页

人力资源决策系统中偏见和缓解的全面策略PDF文件第4页

人力资源决策系统中偏见和缓解的全面策略PDF文件第5页