Loading...
机构名称:
¥ 1.0

摘要 - 随着网络犯罪的发展越来越多,智能网络入侵检测系统(NIDS)的存在在网络基础架构中是必不可少的。此外,还有许多挑战面临基于人工智能的NID设计,例如网络流量中的无关功能,罕见的恶意流量示例以及机器学习模型选择和模型的Mypermeters finetuning的努力。这项研究提出了与这些挑战有关的有效NID,以准确检测恶意行为。首先,一种并行混合特征选择方法过滤了最重要的功能。第二,为了解决数据不平衡,我们集成了一项合并的随机下采样策略和合成少数民族过采样技术 - 编辑了最近的邻居技术,以确保对少数派攻击的平衡表示。最后,堆叠的集合分类器包括通过自动化机器学习方法选择的四种最佳基本模型。使用CICIDS2017数据集(用于入侵检测研究的综合基准),我们的方法达到了令人印象深刻的99.76%的令人印象深刻的检测率,从而有效地识别了多数族裔和少数类别。索引术语 - 开为单位,异常检测器,最佳特征选择,不平衡数据集,SMOTE,集合分类器。

OSE-IDS:优化的堆叠集合入侵检测...

OSE-IDS:优化的堆叠集合入侵检测...PDF文件第1页

OSE-IDS:优化的堆叠集合入侵检测...PDF文件第2页

OSE-IDS:优化的堆叠集合入侵检测...PDF文件第3页

OSE-IDS:优化的堆叠集合入侵检测...PDF文件第4页

OSE-IDS:优化的堆叠集合入侵检测...PDF文件第5页