全球有超过5500万人受痴呆症影响,每年有近1000万例新病例,阿尔茨海默氏病是一种普遍且具有挑战性的神经退行性疾病。尽管对阿尔茨海默氏病检测的机器学习技术取得了重大进步,但深度学习模型的广泛采用引起了人们对其解释性的关注。在在线手写分析的深度学习模型中缺乏解释性,这在阿尔茨海默氏病检测的背景下是文献中的一个关键差距。本文通过解释应用于多变量时间序列数据的卷积神经网络的预测来解决这一挑战,该预测是由在图形平板电脑上手写的连续循环系列相关的在线手写数据生成的。我们的解释性方法揭示了健康个体和被诊断为阿尔茨海默氏症的人的不同运动行为特征。健康受试者表现出一致,平稳的运动,而阿尔茨海默氏症患者的表现出了不稳定的模式,其标记为突然停止和方向变化。这强调了解释性在将复杂模型转化为临床相关见解中的关键作用。我们的研究有助于提高早期诊断,为参与患者护理和干预策略的利益相关者提供了重要的可靠见解。我们的工作弥合了机器学习预测与临床见解之间的差距,从而促进了对阿尔茨海默氏病评估的高级模型的更有效和可理解的应用。
主要关键词