网络安全在维持个人用户信息(例如密码和PIN代码)的机密性和完整性方面面临着重大挑战。每天,数十亿用户会接触到请求敏感信息的假登录页面。有很多方法可以欺骗用户访问网站,例如网络钓鱼电子邮件,诱饵和开关广告,click插齿,恶意软件,SQL注入,会话劫持,中间人,中间人,拒绝服务和跨站点脚本攻击。Web欺骗或网络钓鱼是一种电子技巧,其中攻击者会创建合法网页的恶意副本,并请求个人用户信息(例如密码)。为了打击此类攻击,研究人员提出了几种安全策略,但它们遭受了延迟和准确性问题的困扰。为了克服此类问题,我们建议并开发一种基于机器学习技术的客户端防御机制,以检测伪造的网站并保护用户免于网络钓鱼攻击。作为概念证明,开发了一个名为PhishCatcher的Google Chrome扩展程序,该扩展名实现了机器学习算法以将URL归类为可疑或值得信赖。该算法采用四种不同类型的Web功能作为输入,并使用随机森林分类器来确定登录网页是否是假的。为了评估扩展的准确性和精度,在实际Web应用程序上进行了一些实验。实验结果表明,从400个分类的网络钓鱼URL和400个合法URL的实验中,实验的惊人精度为98.5%,精度为98.5%。PhishCatcher记录的平均响应时间仅为62.5毫秒。为测量工具的潜伏期,还进行了40多个网络钓鱼URL的实验。
主要关键词