Loading...
机构名称:
¥ 1.0

统计关系学习和AI(starai)[11,32],另一方面,在存在不同的对象和关系的数量(即在关系领域)的存在。但是,关系RL [8]相对尚未探索,尽管存在某些方法[42],但它们并不能按照大型任务进行扩展,并且对于多基因设置而言肯定不容易扩展。一个有希望的方向正在利用层次(和关系)计划的组合,以探索多个级别的抽象和RL来学习低级政策[16,20]。受到AI的这些不同子区域的成功的启发,我们采用了一种方法,该方法利用了关系层次规划师的力量作为噪音,关系领域中多种学习的集中式控制器。我们所提出的方法称为多基金关系计划和强化学习(MarePrel),将计划分解,集中控制和代理位置,用于构建特定任务表示的Starai,以及通过这些专业表示的有效和有效学习的深度RL。我们做出以下关键贡献:(1)据我们所知,我们提出了可以跨越多个对象和关系概括的关系构造域的第一个多基因系统。正如我们在相关工作中所显示的那样,多种文献中存在着重要的文献,关系学习以及计划和学习的整合。我们的工作是在多构想系统中将所有这些方向相结合的第一项工作。(2)为了实现这一目标,我们开发了MarePrel,这是一种综合计划和学习体系结构,能够在关系领域的不确定性下进行多种学习。具体而言,玛丽·玛丽(Mareprel)的有效学习和推理能力源于其关系形式的代表,高级计划的分解以及最低级别的深度RL的使用。(3)最后,我们在一些关系多基因领域中证明了我们的AP级的有效性和概括能力。我们将基于不同基于RL的多构基线(包括明确使用子任务信息)进行比较,并说明了我们方法的优越性。本文的其余部分如下:在审查了相关工作并介绍了必要的背景之后,我们概述了我们的多基因框架,并更详细地讨论算法。然后,我们通过讨论未来研究的领域在结束论文之前对一些关系的多种关系领域进行了实验评估。

将计划和强化学习结合起来解决关系多重域

将计划和强化学习结合起来解决关系多重域PDF文件第1页

将计划和强化学习结合起来解决关系多重域PDF文件第2页

将计划和强化学习结合起来解决关系多重域PDF文件第3页

将计划和强化学习结合起来解决关系多重域PDF文件第4页

将计划和强化学习结合起来解决关系多重域PDF文件第5页

相关文件推荐

2020 年
¥1.0
2022 年
¥1.0
2023 年
¥1.0
2021 年
¥1.0
2020 年
¥1.0
2023 年
¥5.0
2021 年
¥8.0
2021 年
¥1.0
2022 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2020 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥1.0
2024 年
¥6.0
2024 年
¥6.0
1900 年
¥1.0
2024 年
¥5.0
2021 年
¥1.0
2025 年
¥1.0