Loading...
机构名称:
¥ 1.0

在物理治疗,理解和分析患者运动(尤其是步态模式受损)方面的摘要对于有效的康复至关重要。传统上,实习治疗师通过与真实患者和教科书的动手经验获得这些技能。但是,这些方法受到患者的可用性以及治疗师可以观察到的动作的可变性的限制。为了解决这些局限性,我们提出了一个新型系统,该系统使治疗师可以从步态运动受损的广泛障碍中学习,而不会受到时间,位置或患者的可用性的限制。该系统利用HumanML3D数据集和组合Text2Length采样和Text2Motion生成的两步框架。在第一步中,分类模型根据输入文本描述预测运动长度。在第二步中,我们使用时间变异自动编码器(VAE)来生成各种且一致的3D运动序列。我们方法的关键组成部分是从Momask框架中利用残留矢量量化(RVQ),该框架可最大程度地减少误差并增强运动的精度。此外,蒙版的变压器确保合成的运动令牌在时间上是一致的,并且在上下文上是准确的。通过HumanML3D数据集进行了验证,我们的系统为物理治疗师提供了沉浸式和交互式工具,在混合现实环境中启用了动态的,特定于患者的运动模拟。通过弥合常规方法和MR辅助培训之间的差距,该方法使用交互式3D表示来改变治疗师的学习方式。它旨在彻底改变治疗培训,使康复策略更加有效和个性化。

通过模拟患者特定的步行运动

通过模拟患者特定的步行运动PDF文件第1页

通过模拟患者特定的步行运动PDF文件第2页

通过模拟患者特定的步行运动PDF文件第3页

通过模拟患者特定的步行运动PDF文件第4页

通过模拟患者特定的步行运动PDF文件第5页

相关文件推荐

2024 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
2025 年
¥1.0
2024 年
¥1.0
2023 年
¥1.0
2023 年
¥1.0
2025 年
¥1.0
2023 年
¥3.0
2020 年
¥1.0
2024 年
¥1.0
2022 年
¥1.0
2022 年
¥1.0
2022 年
¥1.0